Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 125 papers

Constitutive BAK/MCL1 complexes predict paclitaxel and S63845 sensitivity of ovarian cancer.

  • Dongyan Liu‎ et al.
  • Cell death & disease‎
  • 2021‎

We previously found that preformed complexes of BAK with antiapoptotic BCL2 proteins predict BH3 mimetic sensitivities in lymphohematopoietic cells. These complexes have not previously been examined in solid tumors or in the context of conventional anticancer drugs. Here we show the relative amount of BAK found in preformed complexes with MCL1 or BCLXL varies across ovarian cancer cell lines and patient-derived xenografts (PDXs). Cells bearing BAK/MCL1 complexes were more sensitive to paclitaxel and the MCL1 antagonist S63845. Likewise, PDX models with BAK/MCL1 complexes were more likely to respond to paclitaxel. Mechanistically, BIM induced by low paclitaxel concentrations interacted preferentially with MCL1 and displaced MCL1-bound BAK. Further studies indicated that cells with preformed BAK/MCL1 complexes were sensitive to the paclitaxel/S63845 combination, while cells without BAK/MCL1 complexes were not. Our study suggested that the assessment of BAK/MCL1 complexes might be useful for predicting response to paclitaxel alone or in combination with BH3 mimetics.


Concurrent RB1 loss and BRCA-deficiency predicts enhanced immunological response and long-term survival in tubo-ovarian high-grade serous carcinoma.

  • Flurina A M Saner‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

Somatic loss of the tumour suppressor RB1 is a common event in tubo-ovarian high-grade serous carcinoma (HGSC), which frequently co-occurs with alterations in homologous recombination DNA repair genes including BRCA1 and BRCA2 (BRCA). We examined whether tumour expression of RB1 was associated with survival across ovarian cancer histotypes (HGSC, endometrioid (ENOC), clear cell (CCOC), mucinous (MOC), low-grade serous carcinoma (LGSC)), and how co-occurrence of germline BRCA pathogenic variants and RB1 loss influences long-term survival in a large series of HGSC.


In vivo anti-tumor activity of the PARP inhibitor niraparib in homologous recombination deficient and proficient ovarian carcinoma.

  • Mariam M AlHilli‎ et al.
  • Gynecologic oncology‎
  • 2016‎

Poly(ADP-ribose) polymerase (PARP) inhibitors have yielded encouraging responses in high-grade serous ovarian carcinomas (HGSOCs), but the optimal treatment setting remains unknown. We assessed the effect of niraparib on HGSOC patient-derived xenograft (PDX) models as well as the relationship between certain markers of homologous recombination (HR) status, including BRCA1/2 mutations and formation of RAD51 foci after DNA damage, and response of these PDXs to niraparib in vivo.


Expression signature distinguishing two tumour transcriptome classes associated with progression-free survival among rare histological types of epithelial ovarian cancer.

  • Chen Wang‎ et al.
  • British journal of cancer‎
  • 2016‎

The mechanisms of recurrence have been under-studied in rare histologies of invasive epithelial ovarian cancer (EOC) (endometrioid, clear cell, mucinous, and low-grade serous). We hypothesised the existence of an expression signature predictive of outcome in the rarer histologies.


Intra-Gene DNA Methylation Variability Is a Clinically Independent Prognostic Marker in Women's Cancers.

  • Thomas E Bartlett‎ et al.
  • PloS one‎
  • 2015‎

We introduce a novel per-gene measure of intra-gene DNA methylation variability (IGV) based on the Illumina Infinium HumanMethylation450 platform, which is prognostic independently of well-known predictors of clinical outcome. Using IGV, we derive a robust gene-panel prognostic signature for ovarian cancer (OC, n = 221), which validates in two independent data sets from Mayo Clinic (n = 198) and TCGA (n = 358), with significance of p = 0.004 in both sets. The OC prognostic signature gene-panel is comprised of four gene groups, which represent distinct biological processes. We show the IGV measurements of these gene groups are most likely a reflection of a mixture of intra-tumour heterogeneity and transcription factor (TF) binding/activity. IGV can be used to predict clinical outcome in patients individually, providing a surrogate read-out of hard-to-measure disease processes.


Leveraging global gene expression patterns to predict expression of unmeasured genes.

  • James Rudd‎ et al.
  • BMC genomics‎
  • 2015‎

Large collections of paraffin-embedded tissue represent a rich resource to test hypotheses based on gene expression patterns; however, measurement of genome-wide expression is cost-prohibitive on a large scale. Using the known expression correlation structure within a given disease type (in this case, high grade serous ovarian cancer; HGSC), we sought to identify reduced sets of directly measured (DM) genes which could accurately predict the expression of a maximized number of unmeasured genes.


Inherited variants affecting RNA editing may contribute to ovarian cancer susceptibility: results from a large-scale collaboration.

  • Jennifer B Permuth‎ et al.
  • Oncotarget‎
  • 2016‎

RNA editing in mammals is a form of post-transcriptional modification in which adenosine is converted to inosine by the adenosine deaminases acting on RNA (ADAR) family of enzymes. Based on evidence of altered ADAR expression in epithelial ovarian cancers (EOC), we hypothesized that single nucleotide polymorphisms (SNPs) in ADAR genes modify EOC susceptibility, potentially by altering ovarian tissue gene expression. Using directly genotyped and imputed data from 10,891 invasive EOC cases and 21,693 controls, we evaluated the associations of 5,303 SNPs in ADAD1, ADAR, ADAR2, ADAR3, and SND1. Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI), with adjustment for European ancestry. We conducted gene-level analyses using the Admixture Maximum Likelihood (AML) test and the Sequence-Kernel Association test for common and rare variants (SKAT-CR). Association analysis revealed top risk-associated SNP rs77027562 (OR (95% CI)= 1.39 (1.17-1.64), P=1.0x10-4) in ADAR3 and rs185455523 in SND1 (OR (95% CI)= 0.68 (0.56-0.83), P=2.0x10-4). When restricting to serous histology (n=6,500), the magnitude of association strengthened for rs185455523 (OR=0.60, P=1.0x10-4). Gene-level analyses revealed that variation in ADAR was associated (P<0.05) with EOC susceptibility, with PAML=0.022 and PSKAT-CR=0.020. Expression quantitative trait locus analysis in EOC tissue revealed significant associations (P<0.05) with ADAR expression for several SNPs in ADAR, including rs1127313 (G/A), a SNP in the 3' untranslated region. In summary, germline variation involving RNA editing genes may influence EOC susceptibility, warranting further investigation of inherited and acquired alterations affecting RNA editing.


Drug discovery using clinical outcome-based Connectivity Mapping: application to ovarian cancer.

  • Rama Raghavan‎ et al.
  • BMC genomics‎
  • 2016‎

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer death among women in the United States (5 % of cancer deaths). The standard treatment for patients with advanced EOC is initial debulking surgery followed by carboplatin-paclitaxel combination chemotherapy. Unfortunately, with chemotherapy most patients relapse and die resulting in a five-year overall survival around 45 %. Thus, finding novel therapeutics for treating EOC is essential. Connectivity Mapping (CMAP) has been used widely in cancer drug discovery and generally has relied on cancer cell line gene expression and drug phenotype data. Therefore, we took a CMAP approach based on tumor information and clinical endpoints from high grade serous EOC patients.


Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer.

  • Devin C Koestler‎ et al.
  • BMC medical genomics‎
  • 2014‎

Both genetic and epigenetic factors influence the development and progression of epithelial ovarian cancer (EOC). However, there is an incomplete understanding of the interrelationship between these factors and the extent to which they interact to impact disease risk. In the present study, we aimed to gain insight into this relationship by identifying DNA methylation marks that are candidate mediators of ovarian cancer genetic risk.


Common variants at 19p13 are associated with susceptibility to ovarian cancer.

  • Kelly L Bolton‎ et al.
  • Nature genetics‎
  • 2010‎

Epithelial ovarian cancer (EOC) is the leading cause of death from gynecological malignancy in the developed world, accounting for 4% of the deaths from cancer in women. We performed a three-phase genome-wide association study of EOC survival in 8,951 individuals with EOC (cases) with available survival time data and a parallel association analysis of EOC susceptibility. Two SNPs at 19p13.11, rs8170 and rs2363956, showed evidence of association with survival (overall P = 5 × 10⁻⁴ and P = 6 × 10⁻⁴, respectively), but they did not replicate in phase 3. However, the same two SNPs demonstrated genome-wide significance for risk of serous EOC (P = 3 × 10⁻⁹ and P = 4 × 10⁻¹¹, respectively). Expression analysis of candidate genes at this locus in ovarian tumors supported a role for the BRCA1-interacting gene C19orf62, also known as MERIT40, which contains rs8170, in EOC development.


ABCB1 (MDR1) polymorphisms and ovarian cancer progression and survival: a comprehensive analysis from the Ovarian Cancer Association Consortium and The Cancer Genome Atlas.

  • Sharon E Johnatty‎ et al.
  • Gynecologic oncology‎
  • 2013‎

ABCB1 encodes the multi-drug efflux pump P-glycoprotein (P-gp) and has been implicated in multi-drug resistance. We comprehensively evaluated this gene and flanking regions for an association with clinical outcome in epithelial ovarian cancer (EOC).


Kernel canonical correlation analysis for assessing gene-gene interactions and application to ovarian cancer.

  • Nicholas B Larson‎ et al.
  • European journal of human genetics : EJHG‎
  • 2014‎

Although single-locus approaches have been widely applied to identify disease-associated single-nucleotide polymorphisms (SNPs), complex diseases are thought to be the product of multiple interactions between loci. This has led to the recent development of statistical methods for detecting statistical interactions between two loci. Canonical correlation analysis (CCA) has previously been proposed to detect gene-gene coassociation. However, this approach is limited to detecting linear relations and can only be applied when the number of observations exceeds the number of SNPs in a gene. This limitation is particularly important for next-generation sequencing, which could yield a large number of novel variants on a limited number of subjects. To overcome these limitations, we propose an approach to detect gene-gene interactions on the basis of a kernelized version of CCA (KCCA). Our simulation studies showed that KCCA controls the Type-I error, and is more powerful than leading gene-based approaches under a disease model with negligible marginal effects. To demonstrate the utility of our approach, we also applied KCCA to assess interactions between 200 genes in the NF-κB pathway in relation to ovarian cancer risk in 3869 cases and 3276 controls. We identified 13 significant gene pairs relevant to ovarian cancer risk (local false discovery rate <0.05). Finally, we discuss the advantages of KCCA in gene-gene interaction analysis and its future role in genetic association studies.


A targeted genetic association study of epithelial ovarian cancer susceptibility.

  • Madalene Earp‎ et al.
  • Oncotarget‎
  • 2016‎

Genome-wide association studies have identified several common susceptibility alleles for epithelial ovarian cancer (EOC). To further understand EOC susceptibility, we examined previously ungenotyped candidate variants, including uncommon variants and those residing within known susceptibility loci.


Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women's Health Study.

  • Anna E Prizment‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2016‎

The role of the innate immune response in colorectal cancer is understudied. We examined the survival of colorectal cancer patients in relation to eosinophils, innate immune cells, infiltrating the tumor. Tissue microarrays were constructed from paraffin-embedded tumor tissues collected between 1986 and 2002 from 441 post-menopausal women diagnosed with colorectal cancer in the Iowa Women's Health Study. Tissue microarrays were stained with an eosinophil peroxidase antibody. Eosinophils in epithelial and stromal tissues within the tumor (called epithelial and stromal eosinophils, hereafter) were counted and scored into three and four categories, respectively. In addition, the degree of eosinophil degranulation (across epithelial and stromal tissues combined) was quantified and similarly categorized. We used Cox regression to estimate the hazard ratios and 95% confidence interval for all-cause and colorectal cancer death during 5-year follow-up after diagnosis and during follow-up through 2011 ('total follow-up'). The hazard ratios associated with eosinophil scores were adjusted for age of diagnosis, SEER (Surveillance, Epidemiology, and End Results) stage, tumor grade, body mass, and smoking history. High tumor stromal eosinophil score was inversely correlated with age and stage, and was associated with a decreased risk for all-cause and colorectal cancer death: hazard ratios (95% confidence intervals) were 0.61 (0.36-1.02; P-trend=0.02) and 0.48 (0.24-0.93; P-trend=0.01), respectively, during the 5-year follow-up for the highest vs lowest category. The inverse associations also existed for total follow-up for all-cause and colorectal cancer death for the highest vs lowest stromal eosinophil score: hazard ratios (95% confidence intervals) were 0.72 (0.48-1.08; P-trend=0.04) and 0.61 (0.34-1.12; P-trend=0.04), respectively. Further adjustment for treatment, comorbidities, additional lifestyle factors, tumor location, or molecular markers did not markedly change the associations, while adjustment for cytotoxic T cells slightly attenuated all associations. The infiltration of tumors with eosinophils, especially in stromal tissue, may be an important prognostic factor in colorectal cancer.


Conventional chemotherapy and oncogenic pathway targeting in ovarian carcinosarcoma using a patient-derived tumorgraft.

  • Gretchen Glaser‎ et al.
  • PloS one‎
  • 2015‎

Ovarian carcinosarcoma is a rare subtype of ovarian cancer with poor clinical outcomes. The low incidence of this disease makes accrual to large clinical trials challenging. However, studies have shown that treatment responses in patient-derived xenograft (PDX) models correlate with matched-patient responses in the clinic, supporting their use for preclinical testing of standard and novel therapies. An ovarian carcinosarcoma PDX is presented herein and showed resistance to carboplatin and paclitaxel (similar to the patient) but exhibited significant sensitivity to ifosfamide and paclitaxel. The PDX demonstrated overexpression of EGFR mRNA and gene amplification by array comparative genomic hybridization (log2 ratio 0.399). EGFR phosphorylation was also detected. Angiogensis and insulin-like growth factor pathways were also implicated by overexpression of VEGFC and IRS1. In order to improve response to chemotherapy, the PDX was treated with carboplatin/paclitaxel with or without a pan-HER and VEGF inhibitor (BMS-690514) but there was no tumor growth inhibition or improved animal survival, which may be explained by a KRAS mutation. Resistance was also observed when the IGF-1R inhibitor BMS-754807 was combined with carboplatin/paclitaxel. Because poly (ADP-ribose) polymerase inhibitors have activity in ovarian cancer patients, with and without BRCA mutations, ABT-888 was also tested but found to have no activity. Pathogenic mutations were also detected in TP53 and PIK3CA. In conclusion, ifosfamide/paclitaxel was superior to carboplatin/paclitaxel in this ovarian carcinosarcoma PDX and gene overexpression or amplification alone was not sufficient to predict response to targeted therapy. Better predictive markers of response are needed.


Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

  • Karoline B Kuchenbaecker‎ et al.
  • Nature genetics‎
  • 2015‎

Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.


Genome-wide association study identifies multiple loci associated with both mammographic density and breast cancer risk.

  • Sara Lindström‎ et al.
  • Nature communications‎
  • 2014‎

Mammographic density reflects the amount of stromal and epithelial tissues in relation to adipose tissue in the breast and is a strong risk factor for breast cancer. Here we report the results from meta-analysis of genome-wide association studies (GWAS) of three mammographic density phenotypes: dense area, non-dense area and percent density in up to 7,916 women in stage 1 and an additional 10,379 women in stage 2. We identify genome-wide significant (P<5 × 10(-8)) loci for dense area (AREG, ESR1, ZNF365, LSP1/TNNT3, IGF1, TMEM184B and SGSM3/MKL1), non-dense area (8p11.23) and percent density (PRDM6, 8p11.23 and TMEM184B). Four of these regions are known breast cancer susceptibility loci, and four additional regions were found to be associated with breast cancer (P<0.05) in a large meta-analysis. These results provide further evidence of a shared genetic basis between mammographic density and breast cancer and illustrate the power of studying intermediate quantitative phenotypes to identify putative disease-susceptibility loci.


Shared heritability and functional enrichment across six solid cancers.

  • Xia Jiang‎ et al.
  • Nature communications‎
  • 2019‎

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.


Investigation of factors affecting the efficacy of 3C23K, a human monoclonal antibody targeting MISIIR.

  • Sarah E Gill‎ et al.
  • Oncotarget‎
  • 2017‎

MISIIR is a potential target for ovarian cancer (OC) therapy due to its tissue-specific pattern of expression. 3C23K is a novel therapeutic monoclonal anti-MISIIR antibody designed to recruit effector cells and promote cell death through ADCC (antibody dependent cell-mediated cytotoxicity). Our objective was to determine the tolerability and efficacy of 3C23K in OC patient-derived xenografts (PDX) and to identify factors affecting efficacy. Quantitative RT-PCR, immunohistochemistry (IHC), and flow cytometry were used to categorize MISIIR expression in established PDX models derived from primary OC patients. We selected two high expressing models and two low expressing models for in vivo testing. One xenograft model using an MISIIR over-expressing SKOV3ip cell line (Z3) was a positive control. The primary endpoint was change in tumor size. The secondary endpoint was final tumor mass. We observed no statistically significant differences between control and treated animals. The lack of response could be secondary to a number of variables including the lack of known biomarkers of response, the low membrane expression of MISIIR, and a limited ability of 3C23K to induce ADCC in PDX models. Further study is needed to determine the magnitude of ovarian cancer response to 3C23K and also if there is a threshold surface expression to predict response.


Multiple genome-wide analyses of smoking behavior in the Framingham Heart Study.

  • Ellen L Goode‎ et al.
  • BMC genetics‎
  • 2003‎

Cigarette smoking behavior may have a genetic basis. We assessed evidence for quantitative trait loci (QTLs) affecting the maximum number of cigarettes smoked per day, a trait meant to quantify this behavior, using data collected over 40 years as part of the Framingham Heart Study's original and offspring cohorts.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: