Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 498 papers

Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

  • Patrick S Tarpey‎ et al.
  • American journal of human genetics‎
  • 2006‎

In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.


Analysis of variation in NF-kappaB genes and expression levels of NF-kappaB-regulated molecules.

  • Wen Liu-Mares‎ et al.
  • BMC proceedings‎
  • 2007‎

The nuclear factor-kappaB (NF-kappaB) family of transcription factors regulates the expression of a variety of genes involved in apoptosis and immune response. We examined relationships between genotypes at five NF-kappaB subunits (NFKB1, NFKB2, REL, RELA, and RELB) and variable expression levels of 15 NF-kappaB regulated proteins with heritability greater than 0.40: BCL2A1, BIRC2, CD40, CD44, CD80, CFLAR, CR2, FAS, ICAM1, IL15, IRF1, JUNB, MYC, SLC2A5, and VCAM1. SNP genotypes and expression phenotypes from pedigrees of Utah residents with ancestry from northern and western Europe were provided by Genetic Analysis Workshop 15 and supplemented with additional genotype data from the International HapMap Consortium. We conducted association, linkage, and family-based association analyses between each candidate gene and the 15 heritable expression phenotypes. We observed consistent results in association and linkage analyses of the NFKB1 region (encoding p50) and levels of FAS and IRF1 expression. FAS is a cell surface protein that also belongs to the TNF-receptor family; signals through FAS are able to induce apoptosis. IRF1 is a member of the interferon regulatory transcription factor family, which has been shown to regulate apoptosis and tumor-suppression. Analyses in the REL region (encoding c-Rel) revealed linkage and association with CD40 phenotype. CD40 proteins belong to the tumor necrosis factor (TNF)-receptor family, which mediates a broad variety of immune and inflammatory responses. We conclude that variation in the genes encoding p50 and c-Rel may play a role in NF-kappaB-related transcription of FAS, IRF1, and CD40.


Comparison of tagging single-nucleotide polymorphism methods in association analyses.

  • Ellen L Goode‎ et al.
  • BMC proceedings‎
  • 2007‎

Several methods to identify tagging single-nucleotide polymorphisms (SNPs) are in common use for genetic epidemiologic studies; however, there may be loss of information when using only a subset of SNPs. We sought to compare the ability of commonly used pairwise, multimarker, and haplotype-based tagging SNP selection methods to detect known associations with quantitative expression phenotypes. Using data from HapMap release 21 on unrelated Utah residents with ancestors from northern and western Europe (CEPH-Utah, CEU), we selected tagging SNPs in five chromosomal regions using ldSelect, Tagger, and TagSNPs. We found that SNP subsets did not substantially overlap, and that the use of trio data did not greatly impact SNP selection. We then tested associations between HapMap genotypes and expression phenotypes on 28 CEU individuals as part of Genetic Analysis Workshop 15. Relative to the use of all SNPs (n = 210 SNPs across all regions), most subset methods were able to detect single-SNP and haplotype associations. Generally, pairwise selection approaches worked extremely well, relative to use of all SNPs, with marked reductions in the number of SNPs required. Haplotype-based approaches, which had identified smaller SNP subsets, missed associations in some regions. We conclude that the optimal tagging SNP method depends on the true model of the genetic association (i.e., whether a SNP or haplotype is responsible); unfortunately, this is often unknown at the time of SNP selection. Additional evaluations using empirical and simulated data are needed.


Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics.

  • Montserrat Garcia-Closas‎ et al.
  • PLoS genetics‎
  • 2008‎

A three-stage genome-wide association study recently identified single nucleotide polymorphisms (SNPs) in five loci (fibroblast growth receptor 2 (FGFR2), trinucleotide repeat containing 9 (TNRC9), mitogen-activated protein kinase 3 K1 (MAP3K1), 8q24, and lymphocyte-specific protein 1 (LSP1)) associated with breast cancer risk. We investigated whether the associations between these SNPs and breast cancer risk varied by clinically important tumor characteristics in up to 23,039 invasive breast cancer cases and 26,273 controls from 20 studies. We also evaluated their influence on overall survival in 13,527 cases from 13 studies. All participants were of European or Asian origin. rs2981582 in FGFR2 was more strongly related to ER-positive (per-allele OR (95%CI) = 1.31 (1.27-1.36)) than ER-negative (1.08 (1.03-1.14)) disease (P for heterogeneity = 10(-13)). This SNP was also more strongly related to PR-positive, low grade and node positive tumors (P = 10(-5), 10(-8), 0.013, respectively). The association for rs13281615 in 8q24 was stronger for ER-positive, PR-positive, and low grade tumors (P = 0.001, 0.011 and 10(-4), respectively). The differences in the associations between SNPs in FGFR2 and 8q24 and risk by ER and grade remained significant after permutation adjustment for multiple comparisons and after adjustment for other tumor characteristics. Three SNPs (rs2981582, rs3803662, and rs889312) showed weak but significant associations with ER-negative disease, the strongest association being for rs3803662 in TNRC9 (1.14 (1.09-1.21)). rs13281615 in 8q24 was associated with an improvement in survival after diagnosis (per-allele HR = 0.90 (0.83-0.97). The association was attenuated and non-significant after adjusting for known prognostic factors. Our findings show that common genetic variants influence the pathological subtype of breast cancer and provide further support for the hypothesis that ER-positive and ER-negative disease are biologically distinct. Understanding the etiologic heterogeneity of breast cancer may ultimately result in improvements in prevention, early detection, and treatment.


Epigenetic supersimilarity of monozygotic twin pairs.

  • Timothy E Van Baak‎ et al.
  • Genome biology‎
  • 2018‎

Monozygotic twins have long been studied to estimate heritability and explore epigenetic influences on phenotypic variation. The phenotypic and epigenetic similarities of monozygotic twins have been assumed to be largely due to their genetic identity.


Social adversity and epigenetic aging: a multi-cohort study on socioeconomic differences in peripheral blood DNA methylation.

  • Giovanni Fiorito‎ et al.
  • Scientific reports‎
  • 2017‎

Low socioeconomic status (SES) is associated with earlier onset of age-related chronic conditions and reduced life-expectancy, but the underlying biomolecular mechanisms remain unclear. Evidence of DNA-methylation differences by SES suggests a possible association of SES with epigenetic age acceleration (AA). We investigated the association of SES with AA in more than 5,000 individuals belonging to three independent prospective cohorts from Italy, Australia, and Ireland. Low SES was associated with greater AA (β = 0.99 years; 95% CI 0.39,1.59; p = 0.002; comparing extreme categories). The results were consistent across different SES indicators. The associations were only partially modulated by the unhealthy lifestyle habits of individuals with lower SES. Individuals who experienced life-course SES improvement had intermediate AA compared to extreme SES categories, suggesting reversibility of the effect and supporting the relative importance of the early childhood social environment. Socioeconomic adversity is associated with accelerated epigenetic aging, implicating biomolecular mechanisms that may link SES to age-related diseases and longevity.


PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1.

  • Xiang Jiao‎ et al.
  • Oncotarget‎
  • 2017‎

Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD >2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.


Evaluation of copy-number variants as modifiers of breast and ovarian cancer risk for BRCA1 pathogenic variant carriers.

  • Logan C Walker‎ et al.
  • European journal of human genetics : EJHG‎
  • 2017‎

Genome-wide studies of patients carrying pathogenic variants (mutations) in BRCA1 or BRCA2 have reported strong associations between single-nucleotide polymorphisms (SNPs) and cancer risk. To conduct the first genome-wide association analysis of copy-number variants (CNVs) with breast or ovarian cancer risk in a cohort of 2500 BRCA1 pathogenic variant carriers, CNV discovery was performed using multiple calling algorithms and Illumina 610k SNP array data from a previously published genome-wide association study. Our analysis, which focused on functionally disruptive genomic deletions overlapping gene regions, identified a number of loci associated with risk of breast or ovarian cancer for BRCA1 pathogenic variant carriers. Despite only including putative deletions called by at least two or more algorithms, detection of selected CNVs by ancillary molecular technologies only confirmed 40% of predicted common (>1% allele frequency) variants. These include four loci that were associated (unadjusted P<0.05) with breast cancer (GTF2H2, ZNF385B, NAALADL2 and PSG5), and two loci associated with ovarian cancer (CYP2A7 and OR2A1). An interesting finding from this study was an association of a validated CNV deletion at the CYP2A7 locus (19q13.2) with decreased ovarian cancer risk (relative risk=0.50, P=0.007). Genomic analysis found this deletion coincides with a region displaying strong regulatory potential in ovarian tissue, but not in breast epithelial cells. This study highlighted the need to verify CNVs in vitro, but also provides evidence that experimentally validated CNVs (with plausible biological consequences) can modify risk of breast or ovarian cancer in BRCA1 pathogenic variant carriers.


Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores.

  • Julie Lecarpentier‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2017‎

Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10-6). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10-9). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.


Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21.

  • Yosr Hamdi‎ et al.
  • Oncotarget‎
  • 2016‎

There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.


The interaction between farming/rural environment and TLR2, TLR4, TLR6 and CD14 genetic polymorphisms in relation to early- and late-onset asthma.

  • Melisa Y Z Lau‎ et al.
  • Scientific reports‎
  • 2017‎

Asthma phenotypes based on age-of-onset may be differently influenced by the interaction between variation in toll-like receptor (TLR)/CD14 genes and environmental microbes. We examined the associations between single-nucleotide polymorphisms (SNP) in the TLR/CD14 genes and asthma, and their interaction with proxies of microbial exposure (childhood farm exposure and childhood rural environment). Ten SNPs in four genes (TLR2, TLR4, TLR6, CD14) were genotyped for 1,116 participants from the Tasmanian Longitudinal Health Study (TAHS). Using prospectively collected information, asthma was classified as never, early- (before 13 years) or late-onset (after 13 years). Information on childhood farm exposure/childhood rural environment was collected at baseline. Those with early-onset asthma were more likely to be males, had a family history of allergy and a personal history of childhood atopy. We found significant interaction between TLR6 SNPs and childhood farm exposure. For those with childhood farm exposure, carriers of the TLR6-rs1039559 T-allele (p-interaction = 0.009) and TLR6-rs5743810 C-allele (p-interaction = 0.02) were associated with lower risk of early-onset asthma. We suggest the findings to be interpreted as hypothesis-generating as the interaction effect did not withstand correction for multiple testing. In this large, population-based longitudinal study, we found that the risk of early- and late-onset asthma is differently influenced by the interaction between childhood farming exposure and genetic variations.


Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer.

  • Taru A Muranen‎ et al.
  • NPJ breast cancer‎
  • 2020‎

Germline genetic variation has been suggested to influence the survival of breast cancer patients independently of tumor pathology. We have studied survival associations of genetic variants in two etiologically unique groups of breast cancer patients, the carriers of germline pathogenic variants in BRCA1 or BRCA2 genes. We found that rs57025206 was significantly associated with the overall survival, predicting higher mortality of BRCA1 carrier patients with estrogen receptor-negative breast cancer, with a hazard ratio 4.37 (95% confidence interval 3.03-6.30, P = 3.1 × 10-9). Multivariable analysis adjusted for tumor characteristics suggested that rs57025206 was an independent survival marker. In addition, our exploratory analyses suggest that the associations between genetic variants and breast cancer patient survival may depend on tumor biological subgroup and clinical patient characteristics.


The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


Sustained Weight Loss and Risk of Breast Cancer in Women 50 Years and Older: A Pooled Analysis of Prospective Data.

  • Lauren R Teras‎ et al.
  • Journal of the National Cancer Institute‎
  • 2020‎

Excess body weight is an established cause of postmenopausal breast cancer, but it is unknown if weight loss reduces risk.


Accuracy of Risk Estimates from the iPrevent Breast Cancer Risk Assessment and Management Tool.

  • Kelly-Anne Phillips‎ et al.
  • JNCI cancer spectrum‎
  • 2019‎

iPrevent is an online breast cancer (BC) risk management decision support tool. It uses an internal switching algorithm, based on a woman's risk factor data, to estimate her absolute BC risk using either the International Breast Cancer Intervention Study (IBIS) version 7.02, or Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm version 3 models, and then provides tailored risk management information. This study assessed the accuracy of the 10-year risk estimates using prospective data.


Genome-wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk.

  • Minta Thomas‎ et al.
  • American journal of human genetics‎
  • 2020‎

Accurate colorectal cancer (CRC) risk prediction models are critical for identifying individuals at low and high risk of developing CRC, as they can then be offered targeted screening and interventions to address their risks of developing disease (if they are in a high-risk group) and avoid unnecessary screening and interventions (if they are in a low-risk group). As it is likely that thousands of genetic variants contribute to CRC risk, it is clinically important to investigate whether these genetic variants can be used jointly for CRC risk prediction. In this paper, we derived and compared different approaches to generating predictive polygenic risk scores (PRS) from genome-wide association studies (GWASs) including 55,105 CRC-affected case subjects and 65,079 control subjects of European ancestry. We built the PRS in three ways, using (1) 140 previously identified and validated CRC loci; (2) SNP selection based on linkage disequilibrium (LD) clumping followed by machine-learning approaches; and (3) LDpred, a Bayesian approach for genome-wide risk prediction. We tested the PRS in an independent cohort of 101,987 individuals with 1,699 CRC-affected case subjects. The discriminatory accuracy, calculated by the age- and sex-adjusted area under the receiver operating characteristics curve (AUC), was highest for the LDpred-derived PRS (AUC = 0.654) including nearly 1.2 M genetic variants (the proportion of causal genetic variants for CRC assumed to be 0.003), whereas the PRS of the 140 known variants identified from GWASs had the lowest AUC (AUC = 0.629). Based on the LDpred-derived PRS, we are able to identify 30% of individuals without a family history as having risk for CRC similar to those with a family history of CRC, whereas the PRS based on known GWAS variants identified only top 10% as having a similar relative risk. About 90% of these individuals have no family history and would have been considered average risk under current screening guidelines, but might benefit from earlier screening. The developed PRS offers a way for risk-stratified CRC screening and other targeted interventions.


The Risk of Ovarian Cancer Increases with an Increase in the Lifetime Number of Ovulatory Cycles: An Analysis from the Ovarian Cancer Cohort Consortium (OC3).

  • Britton Trabert‎ et al.
  • Cancer research‎
  • 2020‎

Repeated exposure to the acute proinflammatory environment that follows ovulation at the ovarian surface and distal fallopian tube over a woman's reproductive years may increase ovarian cancer risk. To address this, analyses included individual-level data from 558,709 naturally menopausal women across 20 prospective cohorts, among whom 3,246 developed invasive epithelial ovarian cancer (2,045 serous, 319 endometrioid, 184 mucinous, 121 clear cell, 577 other/unknown). Cox models were used to estimate multivariable-adjusted HRs between lifetime ovulatory cycles (LOC) and its components and ovarian cancer risk overall and by histotype. Women in the 90th percentile of LOC (>514 cycles) were almost twice as likely to be diagnosed with ovarian cancer than women in the 10th percentile (<294) [HR (95% confidence interval): 1.92 (1.60-2.30)]. Risk increased 14% per 5-year increase in LOC (60 cycles) [(1.10-1.17)]; this association remained after adjustment for LOC components: number of pregnancies and oral contraceptive use [1.08 (1.04-1.12)]. The association varied by histotype, with increased risk of serous [1.13 (1.09-1.17)], endometrioid [1.20 (1.10-1.32)], and clear cell [1.37 (1.18-1.58)], but not mucinous [0.99 (0.88-1.10), P-heterogeneity = 0.01] tumors. Heterogeneity across histotypes was reduced [P-heterogeneity = 0.15] with adjustment for LOC components [1.08 serous, 1.11 endometrioid, 1.26 clear cell, 0.94 mucinous]. Although the 10-year absolute risk of ovarian cancer is small, it roughly doubles as the number of LOC rises from approximately 300 to 500. The consistency and linearity of effects strongly support the hypothesis that each ovulation leads to small increases in the risk of most ovarian cancers, a risk that cumulates through life, suggesting this as an important area for identifying intervention strategies. SIGNIFICANCE: Although ovarian cancer is rare, risk of most ovarian cancers doubles as the number of lifetime ovulatory cycles increases from approximately 300 to 500. Thus, identifying an important area for cancer prevention research.


Using human genetics to understand the disease impacts of testosterone in men and women.

  • Katherine S Ruth‎ et al.
  • Nature medicine‎
  • 2020‎

Testosterone supplementation is commonly used for its effects on sexual function, bone health and body composition, yet its effects on disease outcomes are unknown. To better understand this, we identified genetic determinants of testosterone levels and related sex hormone traits in 425,097 UK Biobank study participants. Using 2,571 genome-wide significant associations, we demonstrate that the genetic determinants of testosterone levels are substantially different between sexes and that genetically higher testosterone is harmful for metabolic diseases in women but beneficial in men. For example, a genetically determined 1 s.d. higher testosterone increases the risks of type 2 diabetes (odds ratio (OR) = 1.37 (95% confidence interval (95% CI): 1.22-1.53)) and polycystic ovary syndrome (OR = 1.51 (95% CI: 1.33-1.72)) in women, but reduces type 2 diabetes risk in men (OR = 0.86 (95% CI: 0.76-0.98)). We also show adverse effects of higher testosterone on breast and endometrial cancers in women and prostate cancer in men. Our findings provide insights into the disease impacts of testosterone and highlight the importance of sex-specific genetic analyses.


Common variants in breast cancer risk loci predispose to distinct tumor subtypes.

  • Thomas U Ahearn‎ et al.
  • Breast cancer research : BCR‎
  • 2022‎

Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.


Genomic risk prediction of coronary artery disease in women with breast cancer: a prospective cohort study.

  • Lathan Liou‎ et al.
  • Breast cancer research : BCR‎
  • 2021‎

Advancements in cancer therapeutics have resulted in increases in cancer-related survival; however, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratification may help address this clinical dilemma. This study is the first to assess the association between a coronary artery disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: