Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 78 papers out of 78 papers

The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification.

  • Annie Moisan‎ et al.
  • Developmental cell‎
  • 2011‎

WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant β-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues.


Marsdenia tenacissimae extraction (MTE) inhibits the proliferation and induces the apoptosis of human acute T cell leukemia cells through inactivating PI3K/AKT/mTOR signaling pathway via PTEN enhancement.

  • Ying Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Marsdenia tenacissimae extraction (MTE) as a traditional Chinese herb has long been used to treat some diseases such as tumors in China. However, the potential effectiveness of MTE in leukemia has not yet been fully understood, and the related molecular mechanism is still unknown. In the present study, we aimed to evaluate the effects of MTE on the proliferation and apoptosis of Jurkat cells (T-ALL lines) and lymphocytes from T-ALL (T-cell acute lymphoblastic leukemia) patients. Firstly, CCK8 assays and flow cytometry assays revealed that MTE dose-dependently reduced the proliferation of Jurkat cells by arresting cell cycle at S phase. Secondly, Annexin V-FITC/PI-stained flow cytometry and TUNEL staining assays showed that MTE promoted the apoptosis of Jurkat cells. Mechanistically, MTE enhanced PTEN (phosphatases and tensin homolog) level and inactivated PI3K/AKT/mTOR signaling pathway in Jurkat cells, which mediated the inhibition of cell proliferation by MTE and MTE-induced apoptosis. Finally, MTE significantly inhibited the proliferation and promoted the apoptosis of lymphocytes from T-ALL patients, compared with lymphocytes from healthy peoples. Taken together, these results reveal an unrecognized function of MTE in inhibiting the proliferation and inducing the apoptosis of T-ALL cells, and identify a pathway of PTEN/PI3K/AKT/mTOR for the effects of MTE on leukemia therapy.


Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies.

  • Florence Borot‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Antigen-directed immunotherapies for acute myeloid leukemia (AML), such as chimeric antigen receptor T cells (CAR-Ts) or antibody-drug conjugates (ADCs), are associated with severe toxicities due to the lack of unique targetable antigens that can distinguish leukemic cells from normal myeloid cells or myeloid progenitors. Here, we present an approach to treat AML by targeting the lineage-specific myeloid antigen CD33. Our approach combines CD33-targeted CAR-T cells, or the ADC Gemtuzumab Ozogamicin with the transplantation of hematopoietic stem cells that have been engineered to ablate CD33 expression using genomic engineering methods. We show highly efficient genetic ablation of CD33 antigen using CRISPR/Cas9 technology in human stem/progenitor cells (HSPC) and provide evidence that the deletion of CD33 in HSPC doesn't impair their ability to engraft and to repopulate a functional multilineage hematopoietic system in vivo. Whole-genome sequencing and RNA sequencing analysis revealed no detectable off-target mutagenesis and no loss of functional p53 pathways. Using a human AML cell line (HL-60), we modeled a postremission marrow with minimal residual disease and showed that the transplantation of CD33-ablated HSPCs with CD33-targeted immunotherapy leads to leukemia clearance, without myelosuppression, as demonstrated by the engraftment and recovery of multilineage descendants of CD33-ablated HSPCs. Our study thus contributes to the advancement of targeted immunotherapy and could be replicated in other malignancies.


Single-Cell Transcriptomic Analysis Reveals a Hepatic Stellate Cell-Activation Roadmap and Myofibroblast Origin During Liver Fibrosis in Mice.

  • Wu Yang‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2021‎

HSCs and portal fibroblasts (PFs) are the major sources of collagen-producing myofibroblasts during liver fibrosis, depending on different etiologies. However, the mechanisms by which their dynamic gene expression directs the transition from the quiescent to the activated state-as well as their contributions to fibrotic myofibroblasts-remain unclear. Here, we analyze the activation of HSCs and PFs in CCL4 -induced and bile duct ligation-induced fibrosis mouse models, using single-cell RNA sequencing and lineage tracing.


Mechanistic Investigation of Xuebijing for Treatment of Paraquat-Induced Pulmonary Fibrosis by Metabolomics and Network Pharmacology.

  • Tongtong Wang‎ et al.
  • ACS omega‎
  • 2021‎

After paraquat (PQ) poisoning, it is difficult to accurately diagnose patients' condition by only measuring their blood PQ concentration. Therefore, it is important to establish an accurate method to assist in the diagnosis of PQ poisoning, especially in the early stages. In this study, a gas chromatography-mass spectrometry (GC-MS) metabonomics strategy was established to obtain metabolite information. A random forest algorithm was used to search for potential biomarkers of PQ poisoning, and data mining and network pharmacological analysis were used to evaluate the active components, drug-disease targets, and key pathways of Xuebijing (XBJ) injection in the treatment of PQ-induced pulmonary fibrosis. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, molecular docking technology and in vitro experiments were used to verify the pathway targets to further reveal the potential mechanisms underlying the antipulmonary fibrosis effect of XBJ. Metabonomics studies showed that l-valine, glycine, citric acid, d-mannose, d-galactose, maltose, l-tryptophan, and arachidonic acid contributed more to the differentiation of different groups than other metabolites. Compared with the control group, the PQ poisoning group had higher levels of l-valine, glycine, citric acid, l-tryptophan, and arachidonic acid, and lower levels of d-mannose, d-galactose, and maltose. After treatment with XBJ injection, the relative levels of these metabolites were reversed. The network pharmacological analysis screened a total of 180 targets, mainly involving multiple signaling pathways and metabolic pathways, which jointly played an antipulmonary fibrosis effect. Based on the combined analysis of 180 targets and 8 different metabolites, arachidonic acid metabolism was selected as the key metabolic pathway. Molecular docking analysis showed that the XBJ compound had strong binding activity with the target protein. Western blot results showed that XBJ injection could reduce the inflammatory response by downregulating the expressions of p-p65, p-IKBα, and p-IKKβ, thus inhibiting the development of PQ-induced pulmonary fibrosis. In summary, the combined results from metabolomics and network pharmacology studies showed that Xuebijing has the characteristics of multitarget, multichannel, and multicomponent action in the treatment of pulmonary fibrosis caused by PQ.


SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes.

  • Yen K Lieu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.


Fluorofenidone attenuates paraquat‑induced pulmonary fibrosis by regulating the PI3K/Akt/mTOR signaling pathway and autophagy.

  • Feiya Jiang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Paraquat (PQ) is a widely used herbicide that is severely toxic to humans and animals. Pulmonary fibrosis is a disorder that can result from PQ poisoning. Fluorofenidone (AKF‑PD) is a novel small molecule pyridone drug with a widespread and clear anti‑organ fibrosis effect; however, its mechanism of action on PQ poisoning‑induced pulmonary fibrosis is not clear. The purpose of the present study was to investigate the protective effect and underlying mechanism of AKF‑PD on PQ poisoning‑induced pulmonary fibrosis. Human alveolar epithelial cells (HPAEpiC) and Sprague‑Dawley rats were treated with AKF‑PD in the presence or absence of PQ. Hematoxylin‑eosin and Masson staining were used to observe the morphological changes in lung tissue. Cell Counting Kit‑8 and lactate dehydrogenase assays were used to evaluate the viability of HPAEpiC cells. ELISA was used to detect inflammatory factors and the collagen content. Finally, the effects of AKF‑PD on pulmonary fibrosis, as well as the underlying mechanisms, were evaluated via western blotting, reverse transcription‑quantitative PCR and immunofluorescence analysis. AKF‑PD effectively alleviated PQ‑induced pulmonary fibrosis and reduced the expression of oxidative stress and inflammatory factors. Moreover, AKF‑PD treatment effectively inhibited the PI3K/Akt/mTOR signaling pathway and upregulated autophagy. Overall, these findings suggested that AKF‑PD can alleviate PQ‑induced inflammation and pulmonary fibrosis by inhibiting the PI3K/Akt/mTOR signaling pathway and by upregulating autophagy.


The Antianginal Drug Perhexiline Displays Cytotoxicity against Colorectal Cancer Cells In Vitro: A Potential for Drug Repurposing.

  • Bimala Dhakal‎ et al.
  • Cancers‎
  • 2022‎

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Perhexiline, a prophylactic anti-anginal drug, has been reported to have anti-tumour effects both in vitro and in vivo. Perhexiline as used clinically is a 50:50 racemic mixture ((R)-P) of (-) and (+) enantiomers. It is not known if the enantiomers differ in terms of their effects on cancer. In this study, we examined the cytotoxic capacity of perhexiline and its enantiomers ((-)-P and (+)-P) on CRC cell lines, grown as monolayers or spheroids, and patient-derived organoids. Treatment of CRC cell lines with (R)-P, (-)-P or (+)-P reduced cell viability, with IC50 values of ~4 µM. Treatment was associated with an increase in annexin V staining and caspase 3/7 activation, indicating apoptosis induction. Caspase 3/7 activation and loss of structural integrity were also observed in CRC cell lines grown as spheroids. Drug treatment at clinically relevant concentrations significantly reduced the viability of patient-derived CRC organoids. Given these in vitro findings, perhexiline, as a racemic mixture or its enantiomers, warrants further investigation as a repurposed drug for use in the management of CRC.


Islr regulates canonical Wnt signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and preventing autophagy.

  • Kuo Zhang‎ et al.
  • Nature communications‎
  • 2018‎

Satellite cells are crucial for skeletal muscle regeneration, but the molecular mechanisms regulating satellite cells are not entirely understood. Here, we show that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a newly identified marker for mesenchymal stem cells, stabilizes canonical Wnt signaling and promote skeletal muscle regeneration. Loss of Islr delays skeletal muscle regeneration in adult mice. In the absence of Islr, myoblasts fail to develop into mature myotubes due to defective differentiation. Islr interacts with Dishevelled-2 (Dvl2) to activate canonical Wnt signaling, consequently regulating the myogenic factor myogenin (MyoG). Furthermore, Islr stabilizes Dvl2 by reducing the level of LC3-labeled Dvl2 and preventing cells from undergoing autophagy. Together, our findings identify Islr as an important regulator for skeletal muscle regeneration.


LncRNA SNHG16 drives proliferation and invasion of papillary thyroid cancer through modulation of miR-497.

  • Qiang Wen‎ et al.
  • OncoTargets and therapy‎
  • 2019‎

Long noncoding small nucleolar RNA host gene 16 (SNHG16) has been shown to play an oncogenic role in multiple cancers. However, the biological roles and mechanism of SNHG16 action in the regulation of papillary thyroid cancer (PTC) remains unknown. The aims of this study were to investigate the roles and the possible mechanism of SNHG16 in PTC progression.


Targeted Disruption of Bone Marrow Stromal Cell-Derived Gremlin1 Limits Multiple Myeloma Disease Progression In Vivo.

  • Kimberley C Clark‎ et al.
  • Cancers‎
  • 2020‎

In most instances, multiple myeloma (MM) plasma cells (PCs) are reliant on factors made by cells of the bone marrow (BM) stroma for their survival and growth. To date, the nature and cellular composition of the BM tumor microenvironment and the critical factors which drive tumor progression remain imprecisely defined. Our studies show that Gremlin1 (Grem1), a highly conserved protein, which is abundantly secreted by a subset of BM mesenchymal stromal cells, plays a critical role in MM disease development. Analysis of human and mouse BM stromal samples by quantitative PCR showed that GREM1/Grem1 expression was significantly higher in the MM tumor-bearing cohorts compared to healthy controls (p < 0.05, Mann-Whitney test). Additionally, BM-stromal cells cultured with 5TGM1 MM PC line expressed significantly higher levels of Grem1, compared to stromal cells alone (p < 0.01, t-test), suggesting that MM PCs promote increased Grem1 expression in stromal cells. Furthermore, the proliferation of 5TGM1 MM PCs was found to be significantly increased when co-cultured with Grem1-overexpressing stromal cells (p < 0.01, t-test). To examine the role of Grem1 in MM disease in vivo, we utilized the 5TGM1/KaLwRij mouse model of MM. Our studies showed that, compared to immunoglobulin G (IgG) control antibody-treated mice, mice treated with an anti-Grem1 neutralizing antibody had a decrease in MM tumor burden of up to 81.2% (p < 0.05, two-way ANOVA). The studies presented here demonstrate, for the first time, a novel positive feedback loop between MM PCs and BM stroma, and that inhibiting this vicious cycle with a neutralizing antibody can dramatically reduce tumor burden in a preclinical mouse model of MM.


Metabolomics Reveals Discrimination of Chinese Propolis from Different Climatic Regions.

  • Tongtong Wang‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2020‎

The chemical profiles of propolis vary greatly due to the botanic sources and geographic origins, which limit its standardization for modern usages. Here, we proposed a reliable 1H NMR-based metabolomic approach, to discriminate the function and quality of Chinese propolis. A total 63 Chinese propolis samples from different temperate regions were collected and extracted for NMR analysis. Twenty-one compositions in ethanol extracts were assigned based on characteristic chemical shifts and previous literature reports. Significant geographic indicators were identified after the PCA and orthogonal partial least squares discriminant analysis (OPLS-DA) analysis of the obtained 1H NMR data. It was found that the composition discriminations arose from long-term acclimation of the different climates of botanic origin and caused the differences in the biological activities. This study provides us a reasonable instruction for the quality control of Chinese propolis.


Pro-Oxidant Therapeutic Activities of Cerium Oxide Nanoparticles in Colorectal Carcinoma Cells.

  • Aparna Datta‎ et al.
  • ACS omega‎
  • 2020‎

Given that basal levels of reactive oxygen species (ROS) are higher in cancer cells, there is a growing school of thought that endorses pro-oxidants as potential chemotherapeutic agents. Intriguingly, cerium oxide (CeO2) nanoparticles can manifest either anti- or pro-oxidant activity as a function of differential pH of various subcellular localizations. In an acidic pH environment, for example, in extracellular milieu of cancer cells, CeO2 would function as a pro-oxidant. Based on this concept, the present study is designed to investigate the pro-oxidant activities of CeO2 in human colorectal carcinoma cell line (HCT 116). For comparison, we have also studied the effect of ceria nanoparticles on human embryonic kidney (HEK 293) cells. Dose-dependent viability of cancerous as well as normal cells has been assessed by treating them independently with CeO2 nanoparticles of different concentrations (5-100 μg/mL) in the culture media. The half maximal inhibitory concentration (IC50) of nanoceria for HCT 116 is found to be 50.48 μg/mL while that for the HEK 293 cell line is 92.03 μg/mL. To understand the intricate molecular mechanisms of CeO2-induced cellular apoptosis, a series of experiments have been conducted. The apoptosis-inducing ability of nanoceria has been investigated by Annexin V-FITC staining, caspase 3/9 analysis, cytochrome c release, intracellular ROS analysis, and mitochondrial membrane potential analysis using flow cytometry. Experimental data suggest that CeO2 treatment causes DNA fragmentation through enhanced generation of ROS, which ultimately leads to cellular apoptosis through the p53-dependent mitochondrial signaling pathway.


miR-29a/b1 Inhibits Hair Follicle Stem Cell Lineage Progression by Spatiotemporally Suppressing WNT and BMP Signaling.

  • Mengxu Ge‎ et al.
  • Cell reports‎
  • 2019‎

Hair follicle stem cells (HFSCs) and subsequent generations of matrix progeny make lineage choices by responding to spatiotemporal signals; however, the cues driving that specification are not well understood. Here, we demonstrate that the dynamics of microRNA (miR)-29 expression are inversely proportional to HFSC lineage progression. Furthermore, we show that sustained miR-29a/b1 overexpression in anagen or telogen in mice causes a short-hair phenotype and eventual hair loss by inhibiting the proliferation of HFSCs and matrix cells and likely preventing their differentiation. Conversely, in a loss-of-function in vivo model, miR-29a/b1 deficiency accelerates HFSC lineage progression in telogen. Mechanistically, miR-29a/b1 blocks HFSC lineage specification by spatiotemporally targeting Ctnnb1, Lrp6, Bmpr1a, and Ccna2. We further show that skin-specific Lrp6 or Bmpr1a ablation partially accounts for the short-hair phenotype. Overall, these synergistic targets reveal miR-29a/b1 as a high-fidelity antagonist of HFSC lineage progression and a potential therapeutic target for hair loss.


Basal re-esterification finetunes mitochondrial fatty acid utilization.

  • Anand Kumar Sharma‎ et al.
  • Molecular metabolism‎
  • 2023‎

Emerging evidence suggest the existence of constant basal lipolysis and re-esterification of a substantial fraction of thus liberated fatty acids. In stimulated lipolysis, the re-esterification is proposed to be a protective mechanism against lipotoxicity; however, the role of the lipolysis coupled to re-esterification under basal conditions has not been deciphered.


A small-molecule drug inhibits autophagy gene expression through the central regulator TFEB.

  • Yuqi Lin‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Autophagy supports the fast growth of established tumors and promotes tumor resistance to multiple treatments. Inhibition of autophagy is a promising strategy for tumor therapy. However, effective autophagy inhibitors suitable for clinical use are currently lacking. There is a high demand for identifying novel autophagy drug targets and potent inhibitors with drug-like properties. The transcription factor EB (TFEB) is the central transcriptional regulator of autophagy, which promotes lysosomal biogenesis and functions and systematically up-regulates autophagy. Despite extensive evidence that TFEB is a promising target for autophagy inhibition, no small molecular TFEB inhibitors were reported. Here, we show that an United States Food and Drug Administration (FDA)-approved drug Eltrombopag (EO) binds to the basic helix-loop-helix-leucine zipper domain of TFEB, specifically the bottom surface of helix-loop-helix to clash with DNA recognition, and disrupts TFEB-DNA interaction in vitro and in cellular context. EO selectively inhibits TFEB's transcriptional activity at the genomic scale according to RNA sequencing analyses, blocks autophagy in a dose-dependent manner, and increases the sensitivity of glioblastoma to temozolomide in vivo. Together, this work reveals that TFEB is targetable and presents the first direct TFEB inhibitor EO, a drug compound with great potential to benefit a wide range of cancer therapies by inhibiting autophagy.


An integrated single cell and spatial transcriptomic map of human white adipose tissue.

  • Lucas Massier‎ et al.
  • Nature communications‎
  • 2023‎

To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.


NO enhances the adaptability to high-salt environments by regulating osmotic balance, antioxidant defense, and ion homeostasis in eelgrass based on transcriptome and metabolome analysis.

  • Xianyan Wang‎ et al.
  • Frontiers in plant science‎
  • 2024‎

Eelgrass is a typical marine angiosperm that exhibits strong adaptability to high-salt environments. Previous studies have shown that various growth and physiological indicators were significantly affected after the nitrate reductase (NR) pathway for nitric oxide (NO) synthesis in eelgrass was blocked.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: