Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 69 papers out of 69 papers

Inflammatory status of transmigrating primary rat monocytes in a novel perfusion model simulating blood flow.

  • Lindsay A Hohsfield‎ et al.
  • Journal of neuroimmunology‎
  • 2013‎

It remains unclear whether monocyte infiltration plays a protective or detrimental role in neurodegenerative disease. The present study characterizes the inflammatory status of primary monocytes in a novel in vitro perfusion model. Monocytes under perfusion do not undergo elevated cell death. However, perfusion does lead to altered morphology, which can be counteracted by anti-inflammatory drugs. Functional studies indicate that cytokine levels are significantly reduced in perfusion compared to stationary conditions and enhanced with brain slices or capillary endothelial cells. Understanding monocyte properties could lead to refined treatment and new ways to interfere with inflammation in diseased brains.


CaV1.2 calcium channel expression in reactive astrocytes is associated with the formation of amyloid-β plaques in an Alzheimer's disease mouse model.

  • Nina Daschil‎ et al.
  • Journal of Alzheimer's disease : JAD‎
  • 2013‎

Increased activity of L-type Ca2+ channels has been implicated in the pathogenesis of dementia and Alzheimer's disease (AD). Previously we detected CaV1.2 α1-subunit-positive expression in reactive astrocytes surrounding the plaques of 12 month-old transgenic mice overexpressing hAβPP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Here we examined whether increased CaV1.2 α1-subunit expression precedes plaque formation or is specifically associated with the increased amyloid-β (Aβ) load in the plaques. Quantitative RT-PCR expression profiling of all high voltage-gated Ca2+ channel subunits (α1, β, and α2δ) revealed no difference in the hippocampi of 2, 4, and 11 month-old wild type (wt) and transgenic (tg) mice. Immunohistochemistry demonstrated that expression of CaV1.2 α1-subunit, but not of the auxiliary β4 Ca2+ channel subunit, specifically associated with Aβ-positive plaques in brains of 11 month tg mice. No difference in CaV1.2 α1-subunit labeling was found in 2 and 4 month-old wt and tg mice prior to plaque formation. The CaV1.2 α1-subunit-positive cells in 11 month-old tg mice also labeled with GFAP, but not with the microglia marker Iba1. In contrast, GFAP-positive cells induced by injection of quinolinic acid did not reveal any CaV1.2 α1-subunit immunoreactivity. Together these results indicate that the expression of CaV1.2 α1-subunits in reactive astrocytes in the tg AD mouse model is related to the increased amyloid-β load in the plaques rather than caused by effects on gene regulation or mechanisms preceding the manifestation of AD as seen by plaque formation.


Homocysteine has anti-inflammatory properties in a hypercholesterolemic rat model in vivo.

  • Michael Pirchl‎ et al.
  • Molecular and cellular neurosciences‎
  • 2012‎

Inflammation is a hallmark in many neurodegenerative diseases like Alzheimer's disease or vascular dementia. Cholesterol and homocysteine are both vascular risk factors which have been associated with dementia, inflammation and blood-brain barrier dysfunction. In previous studies we found that hypercholesterolemia but not hyperhomocysteinemia induced inflammation in rats in vivo. The aim of the present study was to investigate the effect of a combined treatment of Sprague Dawley rats with cholesterol and homocysteine for 5 months on spatial learning and memory, blood-brain barrier integrity and inflammation. Cholesterol treated rats showed severe learning deficits, while rats treated with cholesterol and homocysteine (Mix) counteracted the cholesterol-induced inflammation and partly the cortical blood-brain barrier disruptions, although cognition was still impaired. To study the potential protective effect of homocysteine, inflammation was induced in organotypic rat brain cortex slices and primary microglial cells by treatment with different inflammatory stimuli (e.g. lipopolysaccharide or tissue plasminogen activator). Tissue plasminogen activator-induced inflammation was counteracted by homocysteine. In conclusion, our data demonstrate that homocysteine significantly ameliorates cholesterol-induced inflammation and blood-brain barrier disruption but not the memory impairment, possibly involving a tissue plasminogen activator-related mechanism.


Systemic proteasome inhibition triggers neurodegeneration in a transgenic mouse model expressing human α-synuclein under oligodendrocyte promoter: implications for multiple system atrophy.

  • Nadia Stefanova‎ et al.
  • Acta neuropathologica‎
  • 2012‎

Multiple system atrophy (MSA) is a progressive late onset neurodegenerative α-synucleinopathy with unclear pathogenesis. Recent genetic and pathological studies support a central role of α-synuclein (αSYN) in MSA pathogenesis. Oligodendroglial cytoplasmic inclusions of fibrillar αSYN and dysfunction of the ubiquitin-proteasome system are suggestive of proteolytic stress in this disorder. To address the possible pathogenic role of oligodendroglial αSYN accumulation and proteolytic failure in MSA we applied systemic proteasome inhibition (PSI) in transgenic mice with oligodendroglial human αSYN expression and determined the presence of MSA-like neurodegeneration in this model as compared to wild-type mice. PSI induced open field motor disability in transgenic αSYN mice but not in wild-type mice. The motor phenotype corresponded to progressive and selective neuronal loss in the striatonigral and olivopontocerebellar systems of PSI-treated transgenic αSYN mice. In contrast no neurodegeneration was detected in PSI-treated wild-type controls. PSI treatment of transgenic αSYN mice was associated with significant ultrastructural alterations including accumulation of fibrillar human αSYN in the cytoplasm of oligodendroglia, which resulted in myelin disruption and demyelination characterized by increased g-ratio. The oligodendroglial and myelin pathology was accompanied by axonal degeneration evidenced by signs of mitochondrial stress and dysfunctional axonal transport in the affected neurites. In summary, we provide new evidence supporting a primary role of proteolytic failure and suggesting a neurodegenerative pathomechanism related to disturbed oligodendroglial/myelin trophic support in the pathogenesis of MSA.


Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development.

  • Arthur Bikbaev‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2020‎

VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of hippocampal neurons. In contrast, overexpression, but not downregulation, of α2δ3 enhances neuronal firing in immature cultures, whereas later in development it suppresses neuronal activity. We found that α2δ1 overexpression increases excitatory synaptic density and selectively enhances presynaptic glutamate release, which is impaired on α2δ1 knockdown. Overexpression of α2δ3 increases the excitatory synaptic density as well but also facilitates spontaneous GABA release and triggers an increase in the density of inhibitory synapses, which is accompanied by enhanced axonaloutgrowth in immature interneurons. Together, our findings demonstrate that α2δ1 and α2δ3 subunits play distinct but complementary roles in driving formation of structural and functional network connectivity during early development. An alteration in α2δ surface expression during critical developmental windows can therefore play a causal role and have a profound impact on the excitatory-to-inhibitory balance and network connectivity.SIGNIFICANCE STATEMENT The computational capacity of neuronal networks is determined by their connectivity. Chemical synapses are the main interface for transfer of information between individual neurons. The initial formation of network connectivity requires spontaneous electrical activity and the calcium channel-mediated signaling. We found that, in early development, auxiliary α2δ3 subunits of calcium channels foster presynaptic release of GABA, trigger formation of inhibitory synapses, and promote axonal outgrowth in inhibitory interneurons. In contrast, later in development, α2δ1 subunits promote the glutamatergic neurotransmission and synaptogenesis, as well as strongly enhance neuronal network activity. We propose that formation of connectivity in neuronal networks is associated with a concerted interplay of α2δ1 and α2δ3 subunits of calcium channels.


Platelet and Plasma Phosphatidylcholines as Biomarkers to Diagnose Cerebral Amyloid Angiopathy.

  • Bettina M Foidl‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Alzheimer's disease is a severe neurodegenerative brain disorder and characterized by deposition of extracellular toxic β-amyloid (42) plaques and the formation of intracellular tau neurofibrillary tangles. In addition, β-amyloid peptide deposits are found in the walls of small to medium blood vessels termed cerebral amyloid angiopathy (CAA). However, the pathogenesis of CAA appears to differ from that of senile plaques in several aspects. The aim of the present study was to analyze different lipids [phosphatidylcholines (PCs) and lysoPCs] in platelets and plasma of a novel mouse model of sporadic CAA (1). Our data show that lipids are significantly altered in plasma of the CAA mice. Levels of eight diacyl PCs, two acyl-alkyl PCs, and five lysoPCs were significantly increased. In extracts of mouse blood platelets, four diacyl and two acyl-alkyl PCs (but not lysoPCs) were significantly altered. Our data show that lipids are changed in CAA with a specific pattern, and we provide for the first time evidence that selected platelet and plasma PCs may help to characterize CAA.


Presynaptic α2δ subunits are key organizers of glutamatergic synapses.

  • Clemens L Schöpf‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.


Spreading of P301S Aggregated Tau Investigated in Organotypic Mouse Brain Slice Cultures.

  • Dhwani S Korde‎ et al.
  • Biomolecules‎
  • 2022‎

Tau pathology extends throughout the brain in a prion-like fashion through connected brain regions. However, the details of the underlying mechanisms are incompletely understood. The present study aims to examine the spreading of P301S aggregated tau, a mutation that is implicated in tauopathies, using organotypic slice cultures. Coronal hippocampal organotypic brain slices (170 µm) were prepared from postnatal (day 8-10) C57BL6 wild-type mice. Collagen hydrogels loaded with P301S aggregated tau were applied to slices and the spread of tau was assessed by immunohistochemistry after 8 weeks in culture. Collagen hydrogels prove to be an effective protein delivery system subject to natural degradation in 14 days and they release tau proteins up to 8 weeks. Slices with un- and hyperphosphorylated P301S aggregated tau demonstrate significant spreading to the ventral parts of the hippocampal slices compared to empty collagen hydrogels after 8 weeks. Moreover, the spread of P301S aggregated tau occurs in a time-dependent manner, which was interrupted when the neuroanatomical pathways are lesioned. We illustrate that the spreading of tau can be investigated in organotypic slice cultures using collagen hydrogels to achieve a localized application and slow release of tau proteins. P301S aggregated tau significantly spreads to the ventral areas of the slices, suggesting that the disease-relevant aggregated tau form possesses spreading potential. Thus, the results offer a novel experimental approach to investigate tau pathology.


Beta-Amyloid Enhances Vessel Formation in Organotypic Brain Slices Connected to Microcontact Prints.

  • Katharina Steiner‎ et al.
  • Biomolecules‎
  • 2023‎

In Alzheimer's disease, the blood-brain barrier breakdown, blood vessel damage and re-organization are early events. Deposits of the small toxic peptide beta-amyloid (Aβ) cause the formation of extracellular plaques and accumulate in vessels disrupting the blood flow but may also play a role in blood clotting. In the present study, we aim to explore the impact of Aβ on the migration of endothelial cells and subsequent vessel formation. We use organotypic brain slices of postnatal day 10 wildtype mice (C57BL/6) and connect them to small microcontact prints (µCPs) of collagen. Our data show that laminin-positive endothelial cells migrate onto collagen µCPs, but without any vessel formation after 4 weeks. When the µCPs are loaded with human Aβ40, (aggregated) human Aβ42 and mouse Aβ42 peptides, the number and migration distance of endothelial cells are significantly reduced, but with a more pronounced subsequent vessel formation. The vessel formation is verified by zonula occludens (ZO)-1 and -2 stainings and confocal microscopy. In addition, the vessel formation is accompanied by a stronger GFAP-positive astroglial formation. Finally, we show that vessels can grow towards convergence when two opposed slices are connected via microcontact-printed lanes. In conclusion, our data show that Aβ promotes vessel formation, and organotypic brain slices connected to collagen µCPs provide a potent tool to study vessel formation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: