Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,416 papers

A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes.

  • Junmei Cairns‎ et al.
  • Scientific reports‎
  • 2016‎

To better address the problem of drug resistance during cancer chemotherapy and explore the possibility of manipulating drug response phenotypes, we developed a network-based phenotype mapping approach (P-Map) to identify gene candidates that upon perturbed can alter sensitivity to drugs. We used basal transcriptomics data from a panel of human lymphoblastoid cell lines (LCL) to infer drug response networks (DRNs) that are responsible for conferring response phenotypes for anthracycline and taxane, two common anticancer agents use in clinics. We further tested selected gene candidates that interact with phenotypic differentially expressed genes (PDEGs), which are up-regulated genes in LCL for a given class of drug response phenotype in triple-negative breast cancer (TNBC) cells. Our results indicate that it is possible to manipulate a drug response phenotype, from resistant to sensitive or vice versa, by perturbing gene candidates in DRNs and suggest plausible mechanisms regulating directionality of drug response sensitivity. More important, the current work highlights a new way to formulate systems-based therapeutic design: supplementing therapeutics that aim to target disease culprits with phenotypic modulators capable of altering DRN properties with the goal to re-sensitize resistant phenotypes.


A route for a strong increase of critical current in nanostrained iron-based superconductors.

  • Toshinori Ozaki‎ et al.
  • Nature communications‎
  • 2016‎

The critical temperature Tc and the critical current density Jc determine the limits to large-scale superconductor applications. Superconductivity emerges at Tc. The practical current-carrying capability, measured by Jc, is the ability of defects in superconductors to pin the magnetic vortices, and that may reduce Tc. Simultaneous increase of Tc and Jc in superconductors is desirable but very difficult to realize. Here we demonstrate a route to raise both Tc and Jc together in iron-based superconductors. By using low-energy proton irradiation, we create cascade defects in FeSe0.5Te0.5 films. Tc is enhanced due to the nanoscale compressive strain and proximity effect, whereas Jc is doubled under zero field at 4.2 K through strong vortex pinning by the cascade defects and surrounding nanoscale strain. At 12 K and above 15 T, one order of magnitude of Jc enhancement is achieved in both parallel and perpendicular magnetic fields to the film surface.


Critical Role for GAB2 in Neuroblastoma Pathogenesis through the Promotion of SHP2/MYCN Cooperation.

  • Xiaoling Zhang‎ et al.
  • Cell reports‎
  • 2017‎

Growing evidence suggests a major role for Src-homology-2-domain-containing phosphatase 2 (SHP2/PTPN11) in MYCN-driven high-risk neuroblastoma, although biologic confirmation and a plausible mechanism for this contribution are lacking. Using a zebrafish model of MYCN-overexpressing neuroblastoma, we demonstrate that mutant ptpn11 expression in the adrenal gland analog of MYCN transgenic fish promotes the proliferation of hyperplastic neuroblasts, accelerates neuroblastomagenesis, and increases tumor penetrance. We identify a similar mechanism in tumors with wild-type ptpn11 and dysregulated Gab2, which encodes a Shp2 activator that is overexpressed in human neuroblastomas. In MYCN transgenic fish, Gab2 overexpression activated the Shp2-Ras-Erk pathway, enhanced neuroblastoma induction, and increased tumor penetrance. We conclude that MYCN cooperates with either GAB2-activated or mutant SHP2 in human neuroblastomagenesis. Our findings further suggest that combined inhibition of MYCN and the SHP2-RAS-ERK pathway could provide effective targeted therapy for high-risk neuroblastoma patients with MYCN amplification and aberrant SHP2 activation.


DNA methyltransferase 1 rs16999593 genetic polymorphism decreases risk in patients with transposition of great arteries.

  • Liming Lei‎ et al.
  • Gene‎
  • 2017‎

Complete transposition of the great arteries (TGA) is the most frequent cyanotic heart defect diagnosed in neonates. However, the exact etiology of TGA is unknown. The aim of the present study was to assess the association of TGA pathogenesis with single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs)-1 and 3a- in Chinese children. We genotyped 5 SNPs (rs16999593, rs16999358, and rs2228611 in DNMT1; and rs2276599 and rs2276598 in DNMT3A) in 206 patients with complete TGA and 252 healthy children. Statistical analysis was performed to explore the association of the 5 SNPs with complete TGA susceptibility. Compared with the T/T and C/C genotypes, the heterozygous genotype C/T of rs16999593 correlated with a decreased risk for complete TGA under codominant (OR=0.46; 95% CI=0.29-0.72), dominant (OR=0.58; 95% CI=0.38-0.88), and overdominant (OR=0.44; 95% CI=0.28-0.68) models. In contrast, the genotype C/C of rs16999593 correlated with a higher risk for TGA under a recessive model (OR=3.15; 95% CI=1.14-8.68) compared with the T/T and C/T genotypes. Furthermore, the TGC, TGT, CGC, and CGT haplotypes of DNMT1 did not differ significantly between the two groups, whereas the frequency of the TAC haplotype was lower in the case group (OR<1; P=0.002). No significant differences in the frequencies of the TC, CC, TT, and CT haplotypes of DNMT3A were found between the two groups. Furthermore, logistic regression showed that sex and the rs16999358 SNP were two independent risk factors for complete TGA. Overall, the C/T genotype of the rs16999593 SNP in DNMT1 might decrease the risk of complete TGA pathogenesis in the Southern Chinese population.


Nitric Oxide-Mediated Regulation of GLUT by T3 and Follicle-Stimulating Hormone in Rat Granulosa Cells.

  • Ye Tian‎ et al.
  • Endocrinology‎
  • 2017‎

Thyroid hormones are important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances follicle-stimulating hormone (FSH)-induced preantral follicle growth and granulosa cells development in vitro, little is known about the molecular mechanisms regulating ovarian development via glucose. In this study, we investigated whether and how T3 combines with FSH to regulate glucose transporter protein (GLUT) expression and glucose uptake in granulosa cells. In this study, we present evidence that T3 and FSH cotreatment significantly increased GLUT-1/GLUT-4 expression, and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of nitric oxide (NO) synthase (NOS)3 expression, total NOS and NOS3 activity, and NO content in granulosa cells. Furthermore, we found that activation of the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K)/Akt pathway is required for the regulation of GLUT expression, translocation, and glucose uptake by hormones. We also found that l-arginine upregulated GLUT-1/GLUT-4 expression and translocation, which were related to increased glucose uptake; however, these responses were significantly blocked by N(G)-nitro-l-arginine methylester. In addition, inhibiting NO production attenuated T3- and FSH-induced GLUT expression, translocation, and glucose uptake in granulosa cells. Our data demonstrate that T3 and FSH cotreatment potentiates cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the mTOR/PI3K/Akt pathway. Meanwhile, NOS3/NO are also involved in this regulatory system. These findings suggest that GLUT is a mediator of T3- and FSH-induced follicular development.


Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks.

  • Dewang Shao‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DEGs) were identified between DM1 and control samples, and between DM2 and control samples. Pathway enrichment analyses were performed for the DEGs. Potential micro (mi)RNAs regulating these DEGs were predicted. An miRNA‑target gene network was constructed for DM1 and DM2. The study identified 223 DEGs in DM1, and 303 DEGs in DM2. DM1 and DM2 shared 172 DEGs. The DEGs in DM1 were enriched with calcium, Wnt and axon guidance signaling pathways. The DEGs in DM2 were linked by adherens junction signaling pathways. miRNA (miR)‑197, miR‑29b and miR‑29c were included in the network modules of DM1. miR‑197, miR‑29c and miR‑29a were involved in the network modules of DM2. It is therefore hypothesized that these signaling pathways and miRNAs underlie DM1 and DM2 cataracts, and may represent potential therapeutic targets for the treatment of this disorder.


The prognostic value of C-reactive protein/albumin ratio in human malignancies: an updated meta-analysis.

  • Hong-Jun Xu‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

This study aims to investigate the prognostic value of pretreatment C-reactive protein/albumin ratio (CAR) in human malignancies by an updated meta-analysis.


Whole exome sequencing identifies a KCNJ12 mutation as a cause of familial dilated cardiomyopathy.

  • Hai-Xin Yuan‎ et al.
  • Medicine‎
  • 2017‎

Dilated cardiomyopathy (DCM) is characterized by left ventricular dilation, and is associated with systolic dysfunction and increased action potential duration. Approximately 50% of DCM cases are caused by inherited gene mutations with genetic and phenotypic heterogeneity. Next generation sequencing may be useful in screening unknown mutations in such cases.A family was identified with DCM, in which the affected family members developed heart failure, arrhythmia, and sudden death. Probands and 4 affected family members underwent whole exome sequencing (WES), bioinformatics methods, and gene annotation to identify potentially causative variants. The Sanger sequencing method was used to verify the candidate mutation.WES yielded 2,238,831 variations. KCNJ12 (p.Glu334del) was identified as a candidate mutation, and the heterozygous mutation was verified by Sanger sequencing.Our study emphasizes the application of WES in identifying causative mutations in DCM. This report is the first to describe the KCNJ12 gene as a cause of DCM in patients.


Prevention of Human Lymphoproliferative Tumor Formation in Ovarian Cancer Patient-Derived Xenografts.

  • Kristina A Butler‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2017‎

Interest in preclinical drug development for ovarian cancer has stimulated development of patient-derived xenograft (PDX) or tumorgraft models. However, the unintended formation of human lymphoma in severe combined immunodeficiency (SCID) mice from Epstein-Barr virus (EBV)-infected human lymphocytes can be problematic. In this study, we have characterized ovarian cancer PDXs which developed human lymphomas and explore methods to suppress lymphoproliferative growth. Fresh human ovarian tumors from 568 patients were transplanted intraperitoneally in SCID mice. A subset of PDX models demonstrated atypical patterns of dissemination with mediastinal masses, hepatosplenomegaly, and CD45-positive lymphoblastic atypia without ovarian tumor engraftment. Expression of human CD20 but not CD3 supported a B-cell lineage, and EBV genomes were detected in all lymphoproliferative tumors. Immunophenotyping confirmed monoclonal gene rearrangements consistent with B-cell lymphoma, and global gene expression patterns correlated well with other human lymphomas. The ability of rituximab, an anti-CD20 antibody, to suppress human lymphoproliferation from a patient's ovarian tumor in SCID mice and prevent growth of an established lymphoma led to a practice change with a goal to reduce the incidence of lymphomas. A single dose of rituximab during the primary tumor heterotransplantation process reduced the incidence of CD45-positive cells in subsequent PDX lines from 86.3% (n = 117 without rituximab) to 5.6% (n = 160 with rituximab), and the lymphoma rate declined from 11.1% to 1.88%. Taken together, investigators utilizing PDX models for research should routinely monitor for lymphoproliferative tumors and consider implementing methods to suppress their growth.


P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL‑17.

  • Qi Tan‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Atopic dermatitis (AD) is characterized by a defective skin barrier, which increases the penetration of allergens and pathogens through the skin. The role of interleukin (IL)‑17, a pro‑inflammatory cytokine, in the pathogenesis of AD remains to be elucidated. The present study aimed to examine the effects of IL‑17 on skin barrier proteins in the HaCaT cell line. The expression levels of filaggrin (FLG) and involucrin (IVL) were evaluated by reverse transcription‑quantitative polymerase chain reaction and western blot analyses of the HaCaT cells following IL‑17 simulation. The role of IL‑17 was further examined by using small molecule inhibitors of extracellular signal‑regulated kinase (ERK) and P38. Treatment of the HaCaT cells with IL‑17 resulted in reduced expression levels of FLG and IVL at the mRNA and protein levels. In addition, the gene expression levels of FLG and IVL were significantly reduced in the HaCaT cells by IL‑4. Treatment with the mitogen‑activated protein kinase (MAPK) inhibitors, SB203580 and PD98059, significantly inhibited the effects of IL‑17 on the gene and protein expression levels of FLG and IVL. Finally, the protein levels of phosphorylated ERK and P38 were significantly increased following IL‑17 stimulation. Taken together, the results revealed that IL‑17 reduced the expression of FLG and IVL in HaCaT cells, and this effect involved the P38/ERK MAPK signaling pathways.


Insights into grapevine defense response against drought as revealed by biochemical, physiological and RNA-Seq analysis.

  • Muhammad Salman Haider‎ et al.
  • Scientific reports‎
  • 2017‎

Grapevine is an important and extensively grown fruit crop, which is severely hampered by drought worldwide. So, comprehending the impact of drought on grapevine genetic resources is necessary. In the present study, RNA-sequencing was executed using cDNA libraries constructed from both drought-stress and control plants. Results generated 12,451 differentially expressed genes (DEGs), out of which 8,021 genes were up-regulated, and 4,430 were down-regulated. Further physiological and biochemical investigations were also performed to validate the biological processes associated with the development of grapevine in response to drought stress. Results also revealed that decline in the rate of stomatal conductance, in turn, decrease the photosynthetic activity and CO2 assimilation in the grapevine leaves. Reactive oxygen species, including stress enzymes and their related proteins, and secondary metabolites were also activated in the present study. Likewise, various hormones also induced in response to drought stress. Overall, the present study concludes that these DEGs play both positive and negative roles in drought tolerance by regulating various biological pathways of grapevine. Nevertheless, our findings have provided valuable gene information for future studies of abiotic stress in grapevine and various other fruit crops.


iASPP Is an Antioxidative Factor and Drives Cancer Growth and Drug Resistance by Competing with Nrf2 for Keap1 Binding.

  • Wenjie Ge‎ et al.
  • Cancer cell‎
  • 2017‎

Reactive oxygen species (ROS) have emerged as important signaling molecules that play crucial roles in carcinogenesis and cytotoxic responses. Nrf2 is the master regulator of ROS balance. Thus, uncovering mechanisms of Nrf2 regulation is important for the development of alternative treatment strategies for cancers. Here, we demonstrate that iASPP, a known p53 inhibitor, lowers ROS independently of p53. Mechanistically, iASPP competes with Nrf2 for Keap1 binding via a DLT motif, leading to decreased Nrf2 ubiquitination and increased Nrf2 accumulation, nuclear translocation, and antioxidative transactivation. This iASPP-Keap1-Nrf2 axis promotes cancer growth and drug resistance both in vitro and in vivo. Thus, iASPP is an antioxidative factor and represents a promising target to improve cancer treatment, regardless of p53 status.


Molecular mechanisms of pathogenesis in hepatocellular carcinoma revealed by RNA‑sequencing.

  • Yao Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to explore the underlying molecular mechanisms of hepatocellular carcinoma (HCC). RNA‑sequencing profiles GSM629264 and GSM629265, from the GSE25599 data set, were downloaded from the Gene Expression Omnibus database and processed by quality evaluation. GSM629264 and GSM629265 were from HCC and adjacent non‑cancerous tissues, respectively. TopHat software was used for alignment analysis, followed by the detection of novel splicing sites. In addition, the Cufflinks software package was used to analyze gene expressions, and the Cuffdiff program was used to screen for differently expressed genes (DEGs) and differentially expressed splicing variants. Gene ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs were also performed. Transcription factors (TFs) and microRNAs (miRNAs) that regulate DEGs were identified, and a protein‑protein interaction (PPI) network was constructed. The hub node in the PPI network was obtained, and the TFs and miRNAs that regulated the hub node were further predicted. The quality of the sequencing data met the standards for analysis, and the clean reads were ~65%. Most sequencing reads mapped into coding sequence exons (CDS_exons), whereas other reads mapped into exon 3' untranslated regions (UTR_Exons), 5'UTR_Exons and Introns. Upregulated and downregulated DEGs between HCC and adjacent non‑cancerous tissues were screened. Genes of differentially expressed splicing variants were identified, including vesicle‑associated membrane protein 4, phosphatidylinositol glycan anchor biosynthesis class C, protein disulfide isomerase family A member 4 and growth arrest specific 5. Screened DEGs were enriched in the complement pathway. In the PPI network, ubiquitin C (UBC) was the hub node. UBC was predicted to be regulated by several TFs, including specificity protein 1 (SP1), FBJ murine osteosarcoma viral oncogene homolog (FOS), proto‑oncogene c‑JUN (JUN), FOS‑like antigen 2 (FOSL2) and SWI/SNF‑related, matrix‑associated, actin‑dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), and several miRNAs, including miR‑30 and miR‑181. Results from the present study demonstrated that UBC, SP1, FOS, JUN, FOSL2, SMARCA4, miR‑30 and miR‑181 may participate in the development of HCC.


The adjuvant value of Herba Cistanches when used in combination with statin in murine models.

  • Elaine Wat‎ et al.
  • Scientific reports‎
  • 2017‎

Statins are well known to have muscle toxicity problem. Herba Cistanches (HC) is a Chinese herb traditionally used for pain in the loins and knees. Our previous in vitro study suggested that it could protect against statin-induced muscle toxicity. However, its in vivo protective effect has never been investigated. The objective of this study was to determine if the aqueous extract of HC (HCE) could prevent simvastatin-induced muscle toxicity in rats, and whether HCE could also exert beneficial effects on reducing high-fat diet-induced hypercholesterolemia and elevated liver cholesterol, thereby reducing the dose of simvastatin when used in combined therapy. From our results, HCE significantly restored simvastatin-induced reduction in muscle weights and reduced elevated plasma creatine kinase in rats. HCE also improved simvastatin-induced reduction in muscle glutathione levels, muscle mitochondrial membrane potential, and reduced simvastatin-induced muscle inflammation. Furthermore, HCE could exert reduction on liver weight, total liver lipid levels and plasma lipid levels in high-fat-fed mice. In conclusion, our study provided in vivo evidence that HCE has potential protective effect on simvastatin-induced toxicity in muscles, and also beneficial effects on diet-induced non-alcoholic fatty liver and hyperlipidemia when being used alone or in combination with simvastatin at a reduced dose.


Membrane binding of the insertion sequence of Proteus vulgaris L-amino acid deaminase stabilizes protein structure and increases catalytic activity.

  • Yingchen Ju‎ et al.
  • Scientific reports‎
  • 2017‎

Proteus vulgaris L-amino acid deaminase (pvLAAD) belongs to a class of bacterial membrane-bound LAADs mainly express in genus Proteus, Providencia and Morganella. These LAADs employ a non-cleavable N-terminal twin-arginine translocation (Tat) peptide to transport across membrane and bind to bacterial surface. Recent studies revealed that a hydrophobic insertion sequence (INS) in these LAADs also interacts with bacterial membrane. However, the functional significance of INS-membrane interaction is not clear. In this study, we made site-directed mutagenesis on the surface-exposed hydrophobic residues of pvLAAD INS, and we found that these mutations impaired the INS-membrane interaction but did not affect pvLAAD activity in the solution. We further found that when cell membrane is present, the catalytic activity can be increased by 8~10 folds for wild-type but not INS-mutated pvLAAD, indicating that the INS-membrane interaction is necessary for increasing activity of pvLAAD. Molecular dynamic (MD) simulations suggested that INS is flexible in the solution, and its conformational dynamics could lead to substrate channel distortion. Circular dichroism (CD) spectroscopy experiments indicated that bacterial membrane was able to maintain the conformation of INS. Our study suggests the function of the membrane binding of INS is to stabilize pvLAAD structure and increase its catalytic activity.


Upregulation of long noncoding RNA LOC440040 promotes tumor progression and predicts poor prognosis in patients with prostate cancer.

  • Cheng Zhang‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Long noncoding RNAs (lncRNAs) play a functional role in the initiation and progression of prostate cancer (PCa). This study aimed to determine differentially expressed lncRNA through high-throughput sequencing technology and investigate its expression, biological function and clinical correlation with PCa.


Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection.

  • Yuhua Qi‎ et al.
  • BMC infectious diseases‎
  • 2012‎

Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection.


Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease.

  • Lunbiao Cui‎ et al.
  • PloS one‎
  • 2011‎

Altered circulating microRNA (miRNA) profiles have been noted in patients with microbial infections. We compared host serum miRNA levels in patients with hand-foot-and-mouth disease (HFMD) caused by enterovirus 71 (EV71) and coxsackievirus 16 (CVA16) as well as in other microbial infections and in healthy individuals. Among 664 different miRNAs analyzed using a miRNA array, 102 were up-regulated and 26 were down-regulated in sera of patients with enteroviral infections. Expression levels of ten candidate miRNAs were further evaluated by quantitative real-time PCR assays. A receiver operating characteristic (ROC) curve analysis revealed that six miRNAs (miR-148a, miR-143, miR-324-3p, miR-628-3p, miR-140-5p, and miR-362-3p) were able to discriminate patients with enterovirus infections from healthy controls with area under curve (AUC) values ranged from 0.828 to 0.934. The combined six miRNA using multiple logistic regression analysis provided not only a sensitivity of 97.1% and a specificity of 92.7% but also a unique profile that differentiated enterovirial infections from other microbial infections. Expression levels of five miRNAs (miR-148a, miR-143, miR-324-3p, miR-545, and miR-140-5p) were significantly increased in patients with CVA16 versus those with EV71 (p<0.05). Combination of miR-545, miR-324-3p, and miR-143 possessed a moderate ability to discrimination between CVA16 and EV71 with an AUC value of 0.761. These data indicate that sera from patients with different subtypes of enteroviral infection express unique miRNA profiles. Serum miRNA expression profiles may provide supplemental biomarkers for diagnosing and subtyping enteroviral HFMD infections.


High-resolution crystal structure of human protease-activated receptor 1.

  • Cheng Zhang‎ et al.
  • Nature‎
  • 2012‎

Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 Å resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.


Acceleration of age-related learning and memory decline in middle-aged CD-1 mice due to maternal exposure to lipopolysaccharide during late pregnancy.

  • Gui-Hai Chen‎ et al.
  • Behavioural brain research‎
  • 2011‎

Previous studies have shown that inflammation process involves pathogenesis of Alzheimer's disease (AD). But, the natural AD model of inflammation has not been obtained yet. In the present study, CD-1 mothers intraperitoneally received a 50 μg/kg lipopolysaccharide (LPS) or normal saline daily during gestational days 15-17. Body weight of the offspring was recorded at ages of 4-33 weeks. A different battery of behavioral tasks was, respectively, completed at ages of 35, 290 and 400 days. The results showed that there was no significant difference in body weight between LPS-treated and control mice during ages of 4-33 weeks. LPS-treated offspring had similar anxiety and locomotor behaviors, and spatial ability of learning and memory at the age of 35 days compared to the controls. At an age of 290 days, the LPS-treated offspring had similar sensorimotor ability, locomotor activity and anxiety, species-typical behaviors, and spatial ability of learning and memory. At an age of 400 days, there were similar sensorimotor ability, locomotor activity and anxiety between the LPS-treated offspring and controls. However, there were impaired species-typical behaviors, and spatial and non-spatial abilities of learning and memory in the LPS-treated offspring. Our results suggested that maternal exposure to LPS in adequate dose in late gestation can deliver term offspring which experience a normal duration of development and maturation, and an accelerated aged-related impairment in memory (spatial and non-spatial) and species-typical behaviors in middle-aged. These meet with the criteria of AD model in behaviors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: