Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 1,361 papers

Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.

  • Xiaoru Xin‎ et al.
  • Molecular cancer‎
  • 2018‎

Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear.


The Steroid Hormone 20-Hydroxyecdysone Regulates the Conjugation of Autophagy-Related Proteins 12 and 5 in a Concentration and Time-Dependent Manner to Promote Insect Midgut Programmed Cell Death.

  • Yong-Bo Li‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12-ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12-ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12-ATG5 in a concentration and time-dependent manner. The ATG12-ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12-ATG5 conjugate level decreased at the time of pupation. At low concentrations (2-5 µM) over a short time course (1-48 h), 20E promoted the conjugation of ATG12-ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12-ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12-ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD.


Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios.

  • Zhen Tan‎ et al.
  • Antonie van Leeuwenhoek‎
  • 2018‎

The goal of this study was to evaluate the microbial communities in the gut and feces from female finishing Landrace pigs with high and low feed conversion ratio (FCR) by 16S rRNA gene amplicon sequencing. Many potential biomarkers can distinguish between high and low FCR groups in the duodenum, ileum, cecum, colon, and rectum, according to linear discriminant analysis effect sizes. The relative abundance of microbes were tested by Mann-Whitney test between the high and low FCR groups in different organs: Campylobacter, Prevotella and Sphaerochaeta were different in the duodenum (P < 0.05); Sanguibacter, Kingella and Anaeroplasma in jejunum; Anaeroplasma, Arthrobacter, Kingella, Megasphaera and SMB53 in the ileum; Butyricicoccus, Campylobacter, Mitsuokella, and Coprobacillus in the cecum; Lactococcus and Peptococcus in the colon; Staphylococcus in the rectum; and Rothia in feces. The prevalence of microbial genera in certain locations could potentially be used as biomarkers to distinguish between high and low FCR. Functional prediction clustering analysis suggested that bacteria in the hindgut mainly participated in carbohydrate metabolism and amino acid metabolism, and different in the relative abundance of metabolic pathways, as predicted from the microbial taxa present, were identified by comparing the high and low groups of each location. The results may provide insights for the alteration of the intestinal microbial communities to improve the growth rate of pigs.


Knockdown of SSATX, an alternative splicing variant of the SAT1 gene, promotes melanoma progression.

  • Qiong Yang‎ et al.
  • Gene‎
  • 2019‎

Alternative splicing can generate multiple protein messages from a single gene and has emerged as an important mechanism to regulate cancer pathways. The human SAT1 gene produces two transcript variants: one translates spermidine/spermine N-1 acetyltransferase (SSAT1), the rate-limiting enzyme in the catabolism of polyamines, and the other generates SSATX, which has largely unknown biological functions. Here, we used experimental data and analyses of several melanoma transcriptome datasets to reveal that SSATX is weakly expressed in melanoma cells. SSATX knockdown promoted the proliferation, migration, and invasion of human melanoma cells via the activation of the Wnt signaling pathway in a manner that was independent of SSAT1 expression. Based on our data, we propose that SSATX functions as a long non-coding RNA prior to its degradation in melanoma cells. Overall, our findings indicate that SSATX acts as a tumor suppressor, which may aid the future diagnosis and treatment of melanoma.


The Associations of Fruit and Vegetable Intake with Lung Cancer Risk in Participants with Different Smoking Status: A Meta-Analysis of Prospective Cohort Studies.

  • Chong Wang‎ et al.
  • Nutrients‎
  • 2019‎

The results of epidemiological studies on the relationship between fruit and vegetable intake and lung cancer risk were inconsistent among participants with different smoking status. The purpose of this study was to investigate these relationships in participants with different smoking status with prospective cohort studies. A systematic literature retrieval was conducted using PubMed and Scopus databases up to June 2019. The summary relative risks (RRs) and the corresponding 95% confidence intervals (CIs) were calculated by random-effects model. The nonlinear dose-response analysis was carried out with restricted cubic spline regression model. Publication bias was estimated using Begg's test. Nine independent prospective studies were included for data synthesis. Dietary consumption of fruit was negatively correlated with lung cancer risk among current smokers and former smokers, and the summery RRs were 0.86 (95% CI: 0.78, 0.94) and 0.91 (95% CI: 0.84, 0.99), respectively. Consumption of vegetable was significantly associated with reduced risk of lung cancer for current smokers (summary RR = 87%; 95% CI: 0.78, 0.94), but not for former smokers and never for smokers. Dose-response analysis suggested that risk of lung cancer was reduced by 5% (95% CI: 0.93, 0.97) in current smokers, and reduced by 4% (95% CI: 0.93, 0.98) in former smokers with an increase of 100 grams of fruit intake per day, respectively. Besides, dose-response analysis indicated a 3% reduction in lung cancer risk in current smokers for 100 gram per day increase of vegetable intake (95% CI: 0.96, 1.00). The findings of this study provide strong evidence that higher fruit consumption is negatively associated with the risk of lung cancer among current smokers and former smokers, while vegetable intake is significantly correlated with reducing the risk of lung cancer in current smokers. These findings might have considerable public health significance for the prevention of lung cancer through dietary interventions.


Comparative adipose transcriptome analysis digs out genes related to fat deposition in two pig breeds.

  • Kai Xing‎ et al.
  • Scientific reports‎
  • 2019‎

Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.


E. coli Enterotoxin LtB Enhances Vaccine-Induced Anti-H. pylori Protection by Promoting Leukocyte Migration into Gastric Mucus via Inflammatory Lesions.

  • Xiaoyan Peng‎ et al.
  • Cells‎
  • 2019‎

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L.lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes' migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes' movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB's potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIPs.

  • Rony A Francois‎ et al.
  • Cancer cell international‎
  • 2019‎

Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects.


Prospective Validation of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly Diagnosed Ovarian Cancer.

  • Stephen Shuford‎ et al.
  • Scientific reports‎
  • 2019‎

Although 70-80% of newly diagnosed ovarian cancer patients respond to first-line therapy, almost all relapse and five-year survival remains below 50%. One strategy to increase five-year survival is prolonging time to relapse by improving first-line therapy response. However, no biomarker today can accurately predict individual response to therapy. In this study, we present analytical and prospective clinical validation of a new test that utilizes primary patient tissue in 3D cell culture to make patient-specific response predictions prior to initiation of treatment in the clinic. Test results were generated within seven days of tissue receipt from newly diagnosed ovarian cancer patients obtained at standard surgical debulking or laparoscopic biopsy. Patients were followed for clinical response to chemotherapy. In a study population of 44, the 32 test-predicted Responders had a clinical response rate of 100% across both adjuvant and neoadjuvant treated populations with an overall prediction accuracy of 89% (39 of 44, p < 0.0001). The test also functioned as a prognostic readout with test-predicted Responders having a significantly increased progression-free survival compared to test-predicted Non-Responders, p = 0.01. This correlative accuracy establishes the test's potential to benefit ovarian cancer patients through accurate prediction of patient-specific response before treatment.


Diagnostic value of D2-40 immunostaining for malignant mesothelioma: a meta-analysis.

  • Chao He‎ et al.
  • Oncotarget‎
  • 2017‎

Malignant mesothelioma (MM) has become a global disease burden for its rising incidence and invariable fatality. D2-40 has been widely used as an immunostaining marker of diagnosing MM, while its diagnostic value has not yet been evaluated. Our study aimed to assess the overall accuracy of D2-40 immunostaining for diagnosing MM through a meta-analysis. A total of 22 studies with 2,264 participants were identified from PubMed, EMBASE, Web of Science, Scopus and the Cochrane database. The pooled sensitivity and specificity of D2-40 for MM was 0.86 (95% CI: 0.84-0.89) and 0.77 (95% CI: 0.74-0.79), respectively. The area under the summary receiver operating characteristic curve is 0.93, with a diagnostic odds ratio 40.37 (95% CI: 19.97-81.61). None of the study variates was found to be a source of heterogeneity after meta-regression analysis. In conclusion, D2-40 immunostaining may not give sufficient evidence by itself to diagnose MM and should be in combination with other markers to improve the accuracy of diagnosis.


Minocycline-Suppression of Early Peripheral Inflammation Reduces Hypoxia-Induced Neonatal Brain Injury.

  • Yingjun Min‎ et al.
  • Frontiers in neuroscience‎
  • 2017‎

While extensive studies report that neonatal hypoxia-ischemia (HI) induces long-term cognitive impairment via inflammatory responses in the brain, little is known about the role of early peripheral inflammation response in HI injury. Here we used a neonatal hypoxia rodent model by subjecting postnatal day 0 (P0d) rat pups to systemic hypoxia (3.5 h), a condition that is commonly seen in clinic neonates, Then, an initial dose of minocycline (45 mg/kg) was injected intraperitoneally (i.p.) 2 h after the hypoxia exposure ended, followed by half dosage (22.5 mg/kg) minocycline treatment for next 6 consecutive days daily. Saline was injected as vehicle control. To examine how early peripheral inflammation responded to hypoxia and whether this peripheral inflammation response was associated to cognitive deficits. We found that neonatal hypoxia significantly increased leukocytes not only in blood, but also increased the monocytes in central nervous system (CNS), indicated by presence of C-C chemokine receptor type 2 (CCR2+)/CD11b+CD45+ positive cells and CCR2 protein expression level. The early onset of peripheral inflammation response was followed by a late onset of brain inflammation that was demonstrated by level of cytokine IL-1β and ionized calcium binding adapter molecule 1(Iba-1; activated microglial cell marker). Interrupted blood-brain barrier (BBB), hypomyelination and learning and memory deficits were seen after hypoxia. Interestingly, the cognitive function was highly correlated with hypoxia-induced leukocyte response. Notably, administration of minocycline even after the onset of hypoxia significantly suppressed leukocyte-mediated inflammation as well as brain inflammation, demonstrating neuroprotection in systemic hypoxia-induced brain damage. Our data provided new insights that systemic hypoxia induces cognitive dysfunction, which involves the leukocyte-mediated peripheral inflammation response.


Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis.

  • Chen Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation and pathological osteogenesis. However, the genetic etiology of AS remains largely unknown. This study aimed to explore the potential role of coding and noncoding genes in the genetic mechanism of AS. Using microarray analyses, this study comprehensively compared lncRNA, microRNA, and mRNA profiles in hip joint ligament tissues from patients with AS and controls. A total of 661 lncRNAs, 574 mRNAs, and 22 microRNAs were differentially expressed in patients with AS compared with controls. Twenty-two of these genes were then validated using real-time polymerase chain reaction. Gene ontology and pathway analyses were performed to explore the principal functions of differentially expressed genes. The pathways were involved mainly in immune regulation, intercellular signaling, osteogenic differentiation, protein synthesis, and degradation. Gene signal transduction network, coding-noncoding co-expression network, and competing endogenous RNA expression network were constructed using bioinformatics methods. Then, two miRNAs, miR-17-5p and miR-27b-3p, that could increase the osteogenic differentiation potentials of ligament fibroblasts were identified. Finally, differentially expressed, five lncRNAs, four miRNAs, and five mRNAs were validated using quantitative real-time polymerase chain reaction. These results suggested that mRNAs, lncRNAs, and microRNAs were involved in AS pathogenesis. The findings might help characterize the pathogenesis of AS and provide novel therapeutic targets for patients with AS in the future.


Prevalence, risk factors and associated adverse pregnancy outcomes of anaemia in Chinese pregnant women: a multicentre retrospective study.

  • Li Lin‎ et al.
  • BMC pregnancy and childbirth‎
  • 2018‎

Anaemia in pregnant women is a public health problem, especially in developing countries. The aim of this study was to assess the prevalence and related risk factors of anaemia during pregnancy in a large multicentre retrospective study (n = 44,002) and to determine the adverse pregnancy outcomes in women with or without anaemia.


Common differentially expressed proteins were found in mouse cleft palate models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and retinoic acid.

  • Chen Wang‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2019‎

Cleft palate(CP) is a widely studied congenital malformation. However, its etiology and pathogenesis still remain unclear. Proteins are fundamental molecules that participate in every biological process within cells. In this study, we established CP mouse models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA), using proteomics technology isobaric tags for relative and absolute quantitation (iTRAQ) to investigate the key proteins in the formation of CP. Pregnant mice were given a gavage of TCDD 28μg/kg or retinoic acid 80mg/kg of body weight or equivalent corn oil at gestational day 10.5(GD10.5) and sacrificed at GD 17.5. Foetal mice were recorded and collected for further detection. Western blot was performed to verify the iTRAQ results. Eventually, we obtained 18 common differentially expressed proteins in TCDD group and RA group compared with normal control, 17 up-regulated and 1 down-regulated. 14-3-3sigma and Annexin A1 were up-regulated in experimental groups at GD17.5, which was consistent with Western blot. We speculated that the common differentially expressed proteins might be one of the molecular mechanisms in the formation of cleft palate.


Identification of the Novel Host Protein Interacting With the Structural Protein VP1 of Chinese Sacbrood Virus by Yeast Two-Hybrid Screening.

  • Xiyan Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Chinese sacbrood virus (CSBV) is the major cause and lead to the collapse of Apis cerana colonies. VP1, the structural protein of CSBV, shows the highest variation in the amino acid sequences among proteins from different CSBV strains as well as exhibits excellent immunogenicity. However, its function with host protein still remains unclear. To clarify its function with host protein, we screened out host cellular proteins that interact with VP1 using the membrane protein yeast two-hybrid system. In addition, we verified interactions between heat shock protein 70 cognate 5 (Hsp70-c5) and VP1 using glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. VP1 and Hsp70-c5 were colocalized in the cytoplasm and nucleus. Using western blot and real-time polymerase chain reaction (PCR), Hsp70-c5 expression in CSBV-infected larvae was upregulated compared with that in healthy larvae. We observed that when we silenced Hsp70-c5, VP1 expression was significantly downregulated. These results demonstrate that Hsp70-c5 is involved in at least one stage(s) of the viral life cycle.


Evaluation of Cervical Intraepithelial Neoplasia Occurrence Following the Recorded Onset of Persistent High-Risk Human Papillomavirus Infection: A Retrospective Study on Infection Duration.

  • Cordelle Lazare‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Objectives: Persistent high-risk human papillomavirus infection is a major factor in the development of cervical intraepithelial neoplasia and cervical cancer. However, the exact point during this infection that cervical intraepithelial neoplasia develops has eluded researchers. Therefore, we designed a study investigating infection duration between the recorded onset of persistent high-risk human papillomavirus infection and cervical intraepithelial neoplasia development. Methods: Basic descriptive statistics, including the Chi-square test and the Kaplan-Meier method, were used to retrospectively analyze data of 277 women who underwent human papillomavirus genotyping, exhibited persistent high-risk human papillomavirus infection, were cervical cytology negative at enrollment, and developed cervical intraepithelial neoplasia at some point during follow-up. Results: Mean number of cervical cytology and human papillomavirus tests was 2.31 per patient (range: 2-8). Human papillomavirus 16, 52, 58, and 33 accounted for 21.64% (132/610), 21.64% (132/610), 15.90% (97/610), and 10.66% (65/610) of infections, respectively. 42.24% (117/277) and 57.76% (160/277) of women were diagnosed with cervical intraepithelial neoplasia 1 and cervical intraepithelial neoplasia 2+ after persistent high-risk human papillomavirus infection, with mean follow-up times of 18.15 (11.81) and 19.82 (13.31) months, respectively. Cervical intraepithelial neoplasia occurred between 4 and 70 months following the recorded onset of persistent high-risk human papillomavirus infection and 73.65% (204/277) of women developed cervical intraepithelial neoplasia within 24 months. Conclusion: Human papillomavirus 16, 52, 58, and 33 were the most prevalent high-risk human papillomavirus types in a group of women in which the majority developed cervical intraepithelial neoplasia within 24 months of persistent infection.


Enhancing the thermostability of phospholipase D from Streptomyces halstedii by directed evolution and elucidating the mechanism of a key amino acid residue using molecular dynamics simulation.

  • Lin Huang‎ et al.
  • International journal of biological macromolecules‎
  • 2020‎

To enhance the thermostability of phospholipase D (PLD), error-prone polymerase chain reaction method was used to create mutants of PLD (PLDsh) from Streptomyces halstedii. One desirable mutant (S163F) with Ser to Phe substitution at position 163 was screened with high-throughput assay. S163F exhibited a 10 °C higher optimum temperature than wild-type (WT). Although WT exhibited almost no activity after incubating at 50 °C for 40 min, S163F still displayed 27% of its highest activity after incubating at 50 °C for 60 min. Furthermore, the half-life of S163F at 50 °C was 3.04-fold higher than that of WT. The analysis of molecular dynamics simulation suggested that the Ser163Phe mutation led to the formation of salt bridge between Lys300 and Glu314 and a stronger hydrophobic interaction of Phe163 with Pro341, Leu342, and Trp460, resulting in an increased structural rigidity and overall enhanced stability at high temperature. This study provides novel insights on PLD tolerance to high temperature by investigating the structure-activity relationship. In addition, it provides strong theoretical foundation and preliminary information on the engineering of PLD with improved characteristics to meet industrial demand.


Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer progression by cis-regulating the nearby gene MK5 and acting as a let-7f-1-3p sponge.

  • Ting Yang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2020‎

Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown.


Molecular recognition of human islet amyloid polypeptide assembly by selective oligomerization of thioflavin T.

  • Lanlan Yu‎ et al.
  • Science advances‎
  • 2020‎

Selective oligomerization is a common phenomenon existing widely in the formation of intricate biological structures in nature. The precise design of drug molecules with an oligomerization state that specifically recognizes its receptor, however, remains substantially challenging. Here, we used scanning tunneling microscopy (STM) to identify the oligomerization states of an amyloid probe thioflavin T (ThT) on hIAPP8-37 assembly to be exclusively even numbers. We demonstrate that both adhesive interactions between ThT and the protein substrate and cohesive interactions among ThT molecules govern the oligomerization state of the bounded ThT. Specifically, the work of the cohesive interaction between two head/tail ThTs is determined to be 6.4 k B T, around 50% larger than that of the cohesive interaction between two side-by-side ThTs (4.2 k B T). Overall, our STM imaging and theoretical understanding at the single-molecule level provide valuable insights into the design of drug compounds using the selective oligomerization of molecular probes to recognize protein self-assembly.


CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer.

  • Zhenxing Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The progression of lung cancer is majorly facilitated by TAMs (tumour-associated macrophages). However, how the TAMs infiltrate the NSCLC microenvironment and the associated biochemical are not fully elaborated. Research has revealed that changes in CtBP1 modulates innate immunity. Here, we investigated if CtBP1 facilitates infiltration of TAM and the subsequent progression of NSCLC. Immunohistochemical analysis was carried out in 96 NSCLC patients to estimate the clinicopathological importance of CtBP1 in the disease. CtBP1 overexpression and knockdown were carried out to assess the activity of CtBP1 in NSCLC cells. Elevated expression of CtBP1 correlated positively with TAMs infiltration into NSCLC tissues, induced EMT (epithelial-mesenchymal transition) in NSCLC cells and modulated the activated NF-κB signalling pathway leading to increase in CCL2 secretion from NSCLC cells, thus promoting TAM recruitment and polarization. TAM induction and polarization reduced significantly on exhausting p65 in NSCLC cells with CtBP1. Moreover, infiltration of TMAs was reduced remarkably on antagonist-mediated blocking of CCR2 and impeded the progression of NSCLC in a mouse model. These findings thus show a novel insight into the process of CtBP1-regulated TAM infiltration in NSCLC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: