Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 224 papers

Facial emotion recognition in children treated for posterior fossa tumours and typically developing children: A divergence of predictors.

  • Iska Moxon-Emre‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Facial emotion recognition (FER) deficits are evident and pervasive across neurodevelopmental, psychiatric, and acquired brain disorders in children, including children treated for brain tumours. Such deficits are thought to perpetuate challenges with social relationships and decrease quality of life. The present study combined eye-tracking, neuroimaging and cognitive assessments to evaluate if visual attention, brain structure, and general cognitive function contribute to FER in children treated for posterior fossa (PF) tumours (patients: n = 36) and typically developing children (controls: n = 18). To assess FER, all participants completed the Diagnostic Analysis of Nonverbal Accuracy (DANVA2), a computerized task that measures FER using photographs, while their eye-movements were recorded. Patients made more FER errors than controls (p < .01). Although we detected subtle deficits in visual attention and general cognitive function in patients, we found no associations with FER. Compared to controls, patients had evidence of white matter (WM) damage, (i.e., lower fractional anisotropy [FA] and higher radial diffusivity [RD]), in multiple regions throughout the brain (all p < .05), but not in specific WM tracts associated with FER. Despite the distributed WM differences between groups, WM predicted FER in controls only. In patients, factors associated with their disease and treatment predicted FER. Our study provides insight into predictors of FER that may be unique to children treated for PF tumours, and highlights a divergence in associations between brain structure and behavioural outcomes in clinical and typically developing populations; a concept that may be broadly applicable to other neurodevelopmental and clinical populations that experience FER deficits.


Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma.

  • Robert J Vanner‎ et al.
  • Cancer cell‎
  • 2014‎

Functional heterogeneity within tumors presents a significant therapeutic challenge. Here we show that quiescent, therapy-resistant Sox2(+) cells propagate sonic hedgehog subgroup medulloblastoma by a mechanism that mirrors a neurogenic program. Rare Sox2(+) cells produce rapidly cycling doublecortin(+) progenitors that, together with their postmitotic progeny expressing NeuN, comprise tumor bulk. Sox2(+) cells are enriched following anti-mitotic chemotherapy and Smoothened inhibition, creating a reservoir for tumor regrowth. Lineage traces from Sox2(+) cells increase following treatment, suggesting that this population is responsible for relapse. Targeting Sox2(+) cells with the antineoplastic mithramycin abrogated tumor growth. Addressing functional heterogeneity and eliminating Sox2(+) cells presents a promising therapeutic paradigm for treatment of sonic hedgehog subgroup medulloblastoma.


Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas.

  • Matthias A Karajannis‎ et al.
  • Neuro-oncology‎
  • 2014‎

Activation of the RAS-RAF-MEK-ERK signaling pathway is thought to be the key driver of pediatric low-grade astrocytoma (PLGA) growth. Sorafenib is a multikinase inhibitor targeting BRAF, VEGFR, PDGFR, and c-kit. This multicenter phase II study was conducted to determine the response rate to sorafenib in patients with recurrent or progressive PLGA.


RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation.

  • Ming Yuan‎ et al.
  • Oncotarget‎
  • 2014‎

Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Standard treatment for GBM patients is surgery followed by radiotherapy and/or chemotherapy, but tumors always recur. Traditional therapies seem to fail because they eliminate only the bulk of the tumors and spare a population of stem-like cells termed tumor-initiating cells. The stem-like state and preferential activation of DNA damage response in the GBM tumor-initiating cells contribute to their radio-resistance and recurrence. The molecular mechanisms underlying this efficient activation of damage response and maintenance of stem-like state remain elusive. Here we show that RBM14 controls DNA repair pathways and also prevents cell differentiation in GBM spheres, causing radio-resistance. Knockdown of RBM14 affects GBM sphere maintenance and sensitizes radio-resistant GBM cells at the cellular level. We demonstrate that RBM14 knockdown blocks GBM regrowth after irradiation in vivo. In addition, RBM14 stimulates DNA repair by controlling the DNA-PK-dependent non-homologous end-joining (NHEJ) pathway. These results reveal unexpected functions of the RNA-binding protein RBM14 in control of DNA repair and maintenance of tumor-initiating cells. Targeting the RBM14-dependent pathway may prevent recurrence of tumors and eradicate the deadly disease completely.


Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma.

  • Sujatha Venkataraman‎ et al.
  • Oncotarget‎
  • 2014‎

Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo.


A functional genomics approach to identify pathways of drug resistance in medulloblastoma.

  • Kelsey C Bertrand‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

No abstract available


ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner.

  • Jacqueline A Brosnan-Cashman‎ et al.
  • PloS one‎
  • 2018‎

Cancers must maintain their telomeres at lengths sufficient for cell survival. In several cancer subtypes, a recombination-like mechanism termed alternative lengthening of telomeres (ALT), is frequently used for telomere length maintenance. Cancers utilizing ALT often have lost functional ATRX, a chromatin remodeling protein, through mutation or deletion, thereby strongly implicating ATRX as an ALT suppressor. Herein, we have generated functional ATRX knockouts in four telomerase-positive, ALT-negative human glioma cell lines: MOG-G-UVW, SF188, U-251 and UW479. After loss of ATRX, two of the four cell lines (U-251 and UW479) show multiple characteristics of ALT-positive cells, including ultrabright telomeric DNA foci, ALT-associated PML bodies, and c-circles. However, telomerase activity and overall telomere length heterogeneity are unaffected after ATRX loss, regardless of cellular context. The two cell lines that showed ALT hallmarks after complete ATRX loss also did so upon ATRX depletion via shRNA-mediated knockdown. These results suggest that other genomic or epigenetic events, in addition to ATRX loss, are necessary for the induction of ALT in human cancer.


The influence of depth and a subsea pipeline on fish assemblages and commercially fished species.

  • Todd Bond‎ et al.
  • PloS one‎
  • 2018‎

Knowledge of marine ecosystems that grow and reside on and around subsea oil and gas infrastructure is required to understand impacts of this offshore industry on the marine environment and inform decommissioning decisions. This study used baited remote underwater stereo-video systems (stereo-BRUVs) to compare species richness, fish abundance and size along 42.3 km of subsea pipeline and in adjacent areas of varying habitats. The pipeline is laid in an onshore-offshore direction enabling surveys to encompass a range of depths from 9 m nearshore out to 140 m depth offshore. Surveys off the pipeline were performed across this depth range and in an array of natural habitats (sand, macroalgae, coral reef) between 1 km and 40 km distance from the pipeline. A total of 14,953 fish were observed comprising 240 species (131 on the pipeline and 225 off-pipeline) and 59 families (39 on the pipeline and 56 off-pipeline) and the length of 8,610 fish were measured. The fish assemblage on and off the pipeline was similar in depths of <80 m. In depths beyond 80 m, the predominant habitat off-pipeline was sand and differences between fish assemblages on and off-pipeline were more pronounced. The pipeline was characterised by higher biomass and abundances of larger-bodied, commercially important species such as: Pristipomoides multidens (goldband snapper), Lutjanus malabaricus (saddletail snapper) and Lutjanus russellii (Moses' snapper) among others, and possessed a catch value 2-3 times higher per stereo-BRUV deployment than that of fish observed off-pipeline. Adjacent natural seabed habitats possessed higher abundances of Atule mate (yellowtail scad), Nemipterus spp. (threadfin bream) and Terapon jarbua (crescent grunter), species of no or low commercial value. This is the first published study to use stereo-BRUVs to report on the importance of subsea infrastructure to commercially important fishes over a depth gradient and increases our knowledge of the fish assemblage associated with subsea infrastructure off north-west Australia. These results provide a greater understanding of ecological and fisheries implications of decommissioning subsea infrastructure on the north-west shelf, and will help better inform decision-making on the fate of infrastructure at different depths.


Modulating native GABAA receptors in medulloblastoma with positive allosteric benzodiazepine-derivatives induces cell death.

  • Laura Kallay‎ et al.
  • Journal of neuro-oncology‎
  • 2019‎

Pediatric brain cancer medulloblastoma (MB) standard-of-care results in numerous comorbidities. MB is comprised of distinct molecular subgroups. Group 3 molecular subgroup patients have the highest relapse rates and after standard-of-care have a 20% survival. Group 3 tumors have high expression of GABRA5, which codes for the α5 subunit of the γ-aminobutyric acid type A receptor (GABAAR). We are advancing a therapeutic approach for group 3 based on GABAAR modulation using benzodiazepine-derivatives.


Identification of CD24 as a marker of Patched1 deleted medulloblastoma-initiating neural progenitor cells.

  • Jonathan P Robson‎ et al.
  • PloS one‎
  • 2019‎

High morbidity and mortality are common traits of malignant tumours and identification of the cells responsible is a focus of on-going research. Many studies are now reporting the use of antibodies specific to Clusters of Differentiation (CD) cell surface antigens to identify tumour-initiating cell (TIC) populations in neural tumours. Medulloblastoma is one of the most common malignant brain tumours in children and despite a considerable amount of research investigating this tumour, the identity of the TICs, and the means by which such cells can be targeted remain largely unknown. Current prognostication and stratification of medulloblastoma using clinical factors, histology and genetic profiling have classified this tumour into four main subgroups: WNT, Sonic hedgehog (SHH), Group 3 and Group 4. Of these subgroups, SHH remains one of the most studied tumour groups due to the ability to model medulloblastoma formation through targeted deletion of the Shh pathway inhibitor Patched1 (Ptch1). Here we sought to utilise CD antibody expression to identify and isolate TIC populations in Ptch1 deleted medulloblastoma, and determine if these antibodies can help classify the identity of human medulloblastoma subgroups. Using a fluorescence-activated cell sorted (FACS) CD antibody panel, we identified CD24 as a marker of TICs in Ptch1 deleted medulloblastoma. CD24 expression was not correlated with markers of astrocytes or oligodendrocytes, but co-labelled with markers of neural progenitor cells. In conjunction with CD15, proliferating CD24+/CD15+ granule cell precursors (GCPs) were identified as a TIC population in Ptch1 deleted medulloblastoma. On human medulloblastoma, CD24 was found to be highly expressed on Group 3, Group 4 and SHH subgroups compared with the WNT subgroup, which was predominantly positive for CD15, suggesting CD24 is an important marker of non-WNT medulloblastoma initiating cells and a potential therapeutic target in human medulloblastoma. This study reports the use of CD24 and CD15 to isolate a GCP-like TIC population in Ptch1 deleted medulloblastoma, and suggests CD24 expression as a marker to help stratify human WNT tumours from other medulloblastoma subgroups.


An epigenetic therapy for diffuse intrinsic pontine gliomas.

  • Vijay Ramaswamy‎ et al.
  • Nature medicine‎
  • 2014‎

Diffuse intrinsic pontine glioma is a uniformly lethal malignant tumor of infancy with no effective therapies. A new study reveals that inhibition of JMJD3 has robust antitumor activity in diffuse intrinsic pontine glioma xenografts.


Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target.

  • Melanie F Weingart‎ et al.
  • Oncotarget‎
  • 2015‎

Atypical teratoid rhabdoid tumor (AT/RT) is among the most fatal of all pediatric brain tumors. Aside from loss of function mutations in the SMARCB1 (BAF47/INI1/SNF5) chromatin remodeling gene, little is known of other molecular drivers of AT/RT. LIN28A and LIN28B are stem cell factors that regulate thousands of RNAs and are expressed in aggressive cancers. We identified high-levels of LIN28A and LIN28B in AT/RT primary tumors and cell lines, with corresponding low levels of the LIN28-regulated microRNAs of the let-7 family. Knockdown of LIN28A by lentiviral shRNA in the AT/RT cell lines CHLA-06-ATRT and BT37 inhibited growth, cell proliferation and colony formation and induced apoptosis. Suppression of LIN28A in orthotopic xenograft models led to a more than doubling of median survival compared to empty vector controls (48 vs 115 days). LIN28A knockdown led to increased expression of let-7b and let-7g microRNAs and a down-regulation of KRAS mRNA. AT/RT primary tumors expressed increased mitogen activated protein (MAP) kinase pathway activity, and the MEK inhibitor selumetinib (AZD6244) decreased AT/RT growth and increased apoptosis. These data implicate LIN28/RAS/MAP kinase as key drivers of AT/RT tumorigenesis and indicate that targeting this pathway may be a therapeutic option in this aggressive pediatric malignancy.


The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation.

  • Gabriel Leprivier‎ et al.
  • Cell‎
  • 2013‎

Metabolic adaptation is essential for cell survival during nutrient deprivation. We report that eukaryotic elongation factor 2 kinase (eEF2K), which is activated by AMP-kinase (AMPK), confers cell survival under acute nutrient depletion by blocking translation elongation. Tumor cells exploit this pathway to adapt to nutrient deprivation by reactivating the AMPK-eEF2K axis. Adaptation of transformed cells to nutrient withdrawal is severely compromised in cells lacking eEF2K. Moreover, eEF2K knockdown restored sensitivity to acute nutrient deprivation in highly resistant human tumor cell lines. In vivo, overexpression of eEF2K rendered murine tumors remarkably resistant to caloric restriction. Expression of eEF2K strongly correlated with overall survival in human medulloblastoma and glioblastoma multiforme. Finally, C. elegans strains deficient in efk-1, the eEF2K ortholog, were severely compromised in their response to nutrient depletion. Our data highlight a conserved role for eEF2K in protecting cells from nutrient deprivation and in conferring tumor cell adaptation to metabolic stress. PAPERCLIP:


LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program.

  • Xing-gang Mao‎ et al.
  • Oncotarget‎
  • 2013‎

The cellular reprogramming factor LIN28A promotes tumorigenicity in cancers arising outside the central nervous system, but its role in brain tumors is unknown. We detected LIN28A protein in a subset of human gliomas observed higher expression in glioblastoma (GBM) than in lower grade tumors. Knockdown of LIN28A using lentiviral shRNA in GBM cell lines inhibited their invasion, growth and clonogenicity. Expression of LIN28A in GBM cell lines increased the number and size of orthotopic xenograft tumors. LIN28A expression also enhanced the invasiveness of GBM cells in vitro and in vivo. Increasing LIN28A was associated with down-regulation of tumor suppressing microRNAs let-7b and let-7g and up-regulation of the chromatin modifying protein HMGA2. The increase in tumor cell aggressiveness in vivo and in vitro was accompanied by an upregulation of pro-invasive gene expression, including SNAI1. To further investigate the oncogenic potential of LIN28A, we infected hNSC with lentiviruses encoding LIN28A together with dominant negative R248W-TP53, constitutively active KRAS and hTERT. Resulting subclones proliferated at an increased rate and formed invasive GBM-like tumors in orthotopic xenografts in immunodeficient mice. Similar to LIN28A-transduced GBM neurosphere lines, hNSC-derived tumor cells showed increased expression of HMGA2. Taken together, these data suggest a role for LIN28A in high grade gliomas and illustrate an HMGA2-associated, pro-invasive program that can be activated in GBM by LIN28A-mediated suppression of let-7 microRNAs.


Strategies to enhance the distribution of nanotherapeutics in the brain.

  • Clark Zhang‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2017‎

Convection enhanced delivery (CED) provides a powerful means to bypass the blood-brain barrier and drive widespread distribution of therapeutics in brain parenchyma away from the point of local administration. However, recent studies have detailed that the overall distribution of therapeutic nanoparticles (NP) following CED remains poor due to tissue inhomogeneity and anatomical barriers present in the brain, which has limited its translational applicability. Using probe NP, we first demonstrate that a significantly improved brain distribution is achieved by infusing small, non-adhesive NP via CED in a hyperosmolar infusate solution. This multimodal delivery strategy minimizes the hindrance of NP diffusion imposed by the brain extracellular matrix and reduces NP confinement within the perivascular spaces. We further recapitulate the distributions achieved by CED of this probe NP using a most widely explored biodegradable polymer-based drug delivery NP. These findings provide a strategy to overcome several key limitations of CED that have been previously observed in clinical trials.


Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe.

  • Michael Woolman‎ et al.
  • Chemical science‎
  • 2017‎

Medulloblastoma (MB), the most prevalent malignant childhood brain tumour, consists of at least 4 distinct subgroups each of which possesses a unique survival rate and response to treatment. To rapidly determine MB subgroup affiliation in a manner that would be actionable during surgery, we subjected murine xenograft tumours of two MB subgroups (SHH and Group 3) to Mass Spectrometry (MS) profiling using a handheld Picosecond InfraRed Laser (PIRL) desorption probe and interface developed by our group. This platform provides real time MS profiles of tissue based on laser desorbed lipids and small molecules with only 5-10 seconds of sampling. PIRL-MS analysis of ex vivo MB tumours offered a 98% success rate in subgroup determination, observed over 194 PIRL-MS datasets collected from 19 independent tumours (∼10 repetitions each) utilizing 6 different established MB cell lines. Robustness was verified by a 5%-leave-out-and-remodel test. PIRL ablated tissue material was collected on a filter paper and subjected to high resolution LC-MS to provide ion identity assignments for the m/z values that contribute most to the statistical discrimination between SHH and Group 3 MB. Based on this analysis, rapid classification of MB with PIRL-MS utilizes a variety of fatty acid chains, glycerophosphates, glycerophosphoglycerols and glycerophosphocholines rapidly extracted from the tumours. In this work, we provide evidence that 5-10 seconds of sampling from ex vivo MB tissue with PIRL-MS can allow robust tumour subgroup classification, and have identified several biomarker ions responsible for the statistical discrimination of MB Group 3 and the SHH subgroup. The existing PIRL-MS platform used herein offers capabilities for future in vivo use.


Spatial heterogeneity in medulloblastoma.

  • A Sorana Morrissy‎ et al.
  • Nature genetics‎
  • 2017‎

Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.


Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation.

  • Hourinaz Behesti‎ et al.
  • Disease models & mechanisms‎
  • 2013‎

BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers - including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53(-/-) mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1(high) TP53(low) molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.


Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma.

  • Brent A Orr‎ et al.
  • PloS one‎
  • 2012‎

Epigenetic modification of DNA by cytosine methylation to produce 5-methylcytosine (5mC) has become well-recognized as an important epigenetic process in human health and disease. Recently, further modification of 5mC by the ten eleven translocated (TET) family of enzymes to produce 5-hydroxymethylcytosine (5hmC) has been described. In the present study, we used immunohistochemistry to evaluate the distribution of 5hmC in human brain during different periods of development and in a large series of gliomas (n=225). We found that during development, 5hmC levels are high in more differentiated compartments like the fetal cortex, but low in the periventricular progenitor cell regions. In adults, we found 5hmC levels to be highest in the cortex, but present in all intrinsic cell types in the brain including stromal elements. In brain tumors, 5hmC levels were high in low grade tumors and reduced in malignant glioma, but did not exhibit any correlation with IDH1 mutation status. Additionally, we identified a significant relationship between low levels of 5hmC and reduced survival in malignant glioma. This observation was further supported by in silico analysis showing differential expression of genes involved in 5hmC homeostasis in aggressive subsets of glioblastoma. Finally, we show that several genes involved in regulating the levels of 5hmC are also prognostic in malignant glioma. These findings suggest that 5hmC regulation in malignant glioma may represent an important determinant of tumor differentiation and aggressive behavior, as well as a potential therapeutic target.


Novel mutations target distinct subgroups of medulloblastoma.

  • Giles Robinson‎ et al.
  • Nature‎
  • 2012‎

Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: