Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 89 papers

Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice.

  • Malte Kölling‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Diabetic nephropathy is the main cause of end-stage renal disease. MicroRNAs are powerful regulators of the genome, and global expression profiling revealed miR-21 to be among the most highly regulated microRNAs in kidneys of mice with diabetic nephropathy. In kidney biopsies of diabetic patients, miR-21 correlated with tubulointerstitial injury. In situ PCR analysis showed a specific enrichment of miR-21 in glomerular cells. We identified cell division cycle 25a (Cdc25a) and cyclin-dependent kinase 6 (Cdk6) as novel miR-21 targets in mesangial cells. miR-21-mediated repression of Cdc25a and Cdk6 resulted in impaired cell cycle progression and subsequent mesangial cell hypertrophy. miR-21 increased podocyte motility by regulating phosphatase and tensin homolog (Pten). miR-21 antagonism in vitro and in vivo in streptozotocin-induced diabetic mice decreased mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria, and fibrotic- and inflammatory gene expression. In conclusion, miR-21 antagonism rescued various functional and structural parameters in mice with diabetic nephropathy and, thus, might be a viable option in the treatment of patients with diabetic kidney disease.


Loss of urokinase receptor sensitizes cells to DNA damage and delays DNA repair.

  • Pavan B Narayanaswamy‎ et al.
  • PloS one‎
  • 2014‎

DNA damage induced by numerous exogenous or endogenous factors may have irreversible consequences on the cell leading to cell cycle arrest, senescence and cell death. The DNA damage response (DDR) is powerful signaling machinery triggered in response to DNA damage, to provide DNA damage recognition, signaling and repair. Most anticancer drugs induce DNA damage, and DNA repair in turn attenuates therapeutic efficiency of those drugs. Approaches delaying DNA repair are often used to increase efficiency of treatment. Recent data show that ubiquitin-proteasome system is essential for signaling and repair of DNA damage. However, mechanisms providing regulation of proteasome intracellular localization, activity, and recruitment to DNA damage sites are elusive. Even less investigated are the roles of extranuclear signaling proteins in these processes. In this study, we report the involvement of the serine protease urokinase-type plasminogen activator receptor (uPAR) in DDR-associated regulation of proteasome. We show that in vascular smooth muscle cells (VSMC) uPAR activates DNA single strand break repair signaling pathway. We provide evidence that uPAR is essential for functional assembly of the 26S proteasome. We further demonstrate that uPAR mediates DNA damage-induced phosphorylation, nuclear import, and recruitment of the regulatory subunit PSMD6 to proteasome. We found that deficiency of uPAR and PSMD6 delays DNA repair and leads to decreased cell survival. These data may offer new therapeutic approaches for diseases such as cancer, cardiovascular and neurodegenerative disorders.


Involvement of Angiopoietin-2 and Tie2 Receptor Phosphorylation in STEC-HUS Mediated by Escherichia coli O104:H4.

  • Alexander Lukasz‎ et al.
  • Mediators of inflammation‎
  • 2015‎

Escherichia coli O104:H4-associated hemolytic uremic syndrome (HUS) is characterized by Shiga toxin-induced vascular damage. As indicated by recent studies, dysregulation of the angiopoietin (Angpt)/Tie2 ligand receptor system may be crucial for endothelial dysfunction in HUS. Early Angpt-2 levels quantified in 48 adult HUS patients were predictive for a complicated clinical course, in particular for need of hemodialysis and mechanical ventilation as well as occurrence of seizures. In vitro challenge of human umbilical vein endothelial cells with patients' sera indicated an injurious mediator role of Angpt-2 opening future perspectives for mitigating endothelial activation in HUS.


Protein kinase C α inhibition prevents peritoneal damage in a mouse model of chronic peritoneal exposure to high-glucose dialysate.

  • Le Wang‎ et al.
  • Kidney international‎
  • 2016‎

Chronic exposure to commercial glucose-based peritoneal dialysis fluids during peritoneal dialysis induces peritoneal membrane damage leading to ultrafiltration failure. In this study the role of protein kinase C (PKC) α in peritoneal membrane damage was investigated in a mouse model of peritoneal dialysis. We used 2 different approaches: blockade of biological activity of PKCα by intraperitoneal application of the conventional PKC inhibitor Go6976 in C57BL/6 wild-type mice and PKCα-deficient mice on a 129/Sv genetic background. Daily administration of peritoneal dialysis fluid for 5 weeks induced peritoneal upregulation and activation of PKCα accompanied by epithelial-to-mesenchymal transition of peritoneal mesothelial cells, peritoneal membrane fibrosis, neoangiogenesis, and macrophage and T cell infiltration, paralleled by reduced ultrafiltration capacity. All pathological changes were prevented by PKCα blockade or deficiency. Moreover, treatment with Go6976 and PKCα deficiency resulted in strong reduction of proinflammatory, profibrotic, and proangiogenic mediators. In cell culture experiments, both treatment with Go6976 and PKCα deficiency prevented peritoneal dialysis fluid-induced release of MCP-1 from mouse peritoneal mesothelial cells and ameliorated transforming growth factor-β1-induced epithelial-to-mesenchymal transition and peritoneal dialysis fluid-induced MCP-1 release in human peritoneal mesothelial cells. Thus, PKCα plays a crucial role in the pathophysiology of peritoneal membrane dysfunction induced by peritoneal dialysis fluids, and we suggest that its therapeutic inhibition might be a valuable treatment option for peritoneal dialysis patients.


NK Cells of Kidney Transplant Recipients Display an Activated Phenotype that Is Influenced by Immunosuppression and Pathological Staging.

  • Ulrike Hoffmann‎ et al.
  • PloS one‎
  • 2015‎

To explore phenotype and function of NK cells in kidney transplant recipients, we investigated the peripheral NK cell repertoire, capacity to respond to various stimuli and impact of immunosuppressive drugs on NK cell activity in kidney transplant recipients. CD56dim NK cells of kidney transplanted patients displayed an activated phenotype characterized by significantly decreased surface expression of CD16 (p=0.0003), CD226 (p<0.0001), CD161 (p=0.0139) and simultaneously increased expression of activation markers like HLA-DR (p=0.0011) and CD25 (p=0.0015). Upon in vitro stimulation via Ca++-dependent signals, down-modulation of CD16 was associated with induction of interferon (IFN)-γ expression. CD16 modulation and secretion of NFAT-dependent cytokines such as IFN-γ, TNF-α, IL-10 and IL-31 were significantly suppressed by treatment of isolated NK cells with calcineurin inhibitors but not with mTOR inhibitors. In kidney transplant recipients, IFN-γ production was retained in response to HLA class I-negative target cells and to non-specific stimuli, respectively. However, secretion of other cytokines like IL-13, IL-17, IL-22 and IL-31 was significantly reduced compared to healthy donors. In contrast to suppression of cytokine expression at the transcriptional level, cytotoxin release, i.e. perforin, granzyme A/B, was not affected by immunosuppression in vitro and in vivo in patients as well as in healthy donors. Thus, immunosuppressive treatment affects NK cell function at the level of NFAT-dependent gene expression whereby calcineurin inhibitors primarily impair cytokine secretion while mTOR inhibitors have only marginal effects. Taken together, NK cells may serve as indicators for immunosuppression and may facilitate a personalized adjustment of immunosuppressive medication in kidney transplant recipients.


Nox-4 deletion reduces oxidative stress and injury by PKC-α-associated mechanisms in diabetic nephropathy.

  • Vicki Thallas-Bonke‎ et al.
  • Physiological reports‎
  • 2014‎

Current treatments for diabetic nephropathy (DN) only result in slowing its progression, thus highlighting a need to identify novel targets. Increased production of reactive oxygen species (ROS) is considered a key downstream pathway of end-organ injury with increasing data implicating both mitochondrial and cytosolic sources of ROS. The enzyme, NADPH oxidase, generates ROS in the kidney and has been implicated in the activation of protein kinase C (PKC), in the pathogenesis of DN, but the link between PKC and Nox-derived ROS has not been evaluated in detail in vivo. In this study, global deletion of a NADPH-oxidase isoform, Nox4, was examined in mice with streptozotocin-induced diabetes (C57Bl6/J) in order to evaluate the effects of Nox4 deletion, not only on renal structure and function but also on the PKC pathway and downstream events. Nox4 deletion attenuated diabetes-associated increases in albuminuria, glomerulosclerosis, and extracellular matrix accumulation. Lack of Nox4 resulted in a decrease in diabetes-induced renal cortical ROS derived from the mitochondria and the cytosol, urinary isoprostanes, and PKC activity. Immunostaining of renal cortex revealed that major isoforms of PKC, PKC-α and PKC-β1, were increased with diabetes and normalized by Nox4 deletion. Downregulation of the PKC pathway was observed in tandem with reduced expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β1 and restoration of the podocyte slit pore protein nephrin. This study suggests that deletion of Nox4 may alleviate renal injury via PKC-dependent mechanisms, further strengthening the view that Nox4 is a suitable target for renoprotection in diabetes.


CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis.

  • Alexandra Helmke‎ et al.
  • Kidney international‎
  • 2019‎

Peritoneal dialysis (PD) is limited by chronic fibrotic remodeling of the peritoneal wall, a transforming growth factor-β (TGF-β)-mediated process. The fractalkine (CX3CL1) receptor CX3CR1 is expressed on macrophages and monocytes, where it is a marker of TGFβ expression. Detection of its ligand CX3CL1 on the peritoneal mesothelium led us to hypothesize a pathophysiologic role of CX3CL1-CX3CR1 interaction in peritoneal fibrosis. We found that CX3CL1 was expressed on peritoneal mesothelial cells from PD patients and in a murine PD model. CX3CR1, mostly expressed on macrophages in the peritoneal wall, promoted fibrosis induced by chronic dialysate exposure in the mouse model. Our data suggest a positive feedback loop whereby direct interaction with CX3CR1-expressing macrophages promotes mesothelial expression of CX3CL1 and TGFβ expression. In turn, TGFβ upregulates CX3CR1 in murine and human monocytic cells. Upstream, macrophage cytokines including interleukin-1β (IL-1β) promote mesothelial CX3CR1 and TGFβ expression, providing a starting point for CX3CL1-CX3CR1 interaction. IL-1β expression was enhanced by exposure to dialysate both in vitro and in the mouse models. Our data suggest that macrophage-mesothelial cell crosstalk through CX3CR1-CX3CL1 interaction enhances mesothelial TGFβ production, promoting peritoneal fibrosis in response to dialysate exposure. This interaction could be a novel therapeutic target in PD-associated chronic peritoneal fibrosis.


Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury.

  • Malte Kölling‎ et al.
  • Scientific reports‎
  • 2018‎

Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury (AKI). Non-coding RNAs are crucially involved in its pathophysiology. We identified hypoxia-induced long non-coding RNA Malat1 (Metastasis Associated Lung Adenocarcinoma Transcript 1) to be upregulated in renal I/R injury. We here elucidated the functional role of Malat1 in vitro and its potential contribution to kidney injury in vivo. Malat1 was upregulated in kidney biopsies and plasma of patients with AKI, in murine hypoxic kidney tissue as well as in cultured and ex vivo sorted hypoxic endothelial cells and tubular epithelial cells. Malat1 was transcriptionally activated by hypoxia-inducible factor 1-α. In vitro, Malat1 inhibition reduced proliferation and the number of endothelial cells in the S-phase of the cell cycle. In vivo, Malat1 knockout and wildtype mice showed similar degrees of outer medullary tubular epithelial injury, proliferation, capillary rarefaction, inflammation and fibrosis, survival and kidney function. Small-RNA sequencing and whole genome expression analysis revealed only minor changes between ischemic Malat1 knockout and wildtype mice. Contrary to previous studies, which suggested a prominent role of Malat1 in the induction of disease, we did not confirm an in vivo role of Malat1 concerning renal I/R-injury.


The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis.

  • Philipp Kumpers‎ et al.
  • Critical care (London, England)‎
  • 2011‎

Angiopoietin-1 (Angpt1), the natural agonist ligand for the endothelial Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor that reduces endothelial permeability and inhibits leukocyte-endothelium interactions. Here we evaluate the efficacy of a novel polyethylene glycol (PEG)-clustered Tie2 agonist peptide, Vasculotide (VT), to protect against vascular leakage and mortality in a murine model of polymicrobial abdominal sepsis.


Endothelial-derived thrombospondin-1 promotes macrophage recruitment and apoptotic cell clearance.

  • Torsten Kirsch‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2010‎

Rapid apoptotic cell engulfment is crucial for prevention of inflammation and autoimmune diseases and is conducted by special immunocompetent cells like macrophages or immature dendritic cells. We recently demonstrated that endothelial cells (ECs) also participate in apoptotic cell clearance. However, in contrast to conventional phagocytes they respond with an inflammatory phenotype. To further confirm these pro-inflammatory responses human ECs were exposed to apoptotic murine ECs and changes in thrombospondin-1 (TSP-1) expression and in activation of intracellular signalling cascades were determined by real-time qPCR, immunoblotting and immunocytochemistry. Human primary macrophages or monocytic lymphoma cells (U937) were incubated with conditioned supernatant of human ECs exposed to apoptotic cells and changes in activation, migration and phagocytosis were monitored. Finally, plasma levels of TSP-1 in patients with anti-neutrophil cytoplasmic antibody(ANCA)-associated vasculitis (AAV) were determined by ELISA. We provided evidence that apoptotic cells induce enhanced expression of TSP-1 in human ECs and that this increase in TSP-1 is mediated by the mitogen-activated protein kinases (MAPK) ERK1 and 2 and their upstream regulators MEK and B-Raf. We also showed that plasma TSP-1 levels are increased in patients with AAV. Finally, we showed that conditioned supernatant of ECs exposed to apoptotic cells induces pro-inflammatory responses in monocytes or U937 cells and demonstrated that increased TSP-1 expression enhances migration and facilitates engulfment of apoptotic cells by monocyte-derived macrophages or U937 cells. These findings suggest that under pathological conditions with high numbers of uncleared dying cells in the circulation endothelial-derived elevated TSP-1 level may serve as an attraction signal for phagocytes promoting enhanced recognition and clearance of apoptotic cells.


Stat1 nuclear translocation by nucleolin upon monocyte differentiation.

  • Uwe Jerke‎ et al.
  • PloS one‎
  • 2009‎

Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin superfamily, which transmits the import into the nucleus through the NPC.


Heparanase-2 protects from LPS-mediated endothelial injury by inhibiting TLR4 signalling.

  • Yulia Kiyan‎ et al.
  • Scientific reports‎
  • 2019‎

The endothelial glycocalyx and its regulated shedding are important to vascular health. Endo-β-D-glucuronidase heparanase-1 (HPSE1) is the only enzyme that can shed heparan sulfate. However, the mechanisms are not well understood. We show that HPSE1 activity aggravated Toll-like receptor 4 (TLR4)-mediated response of endothelial cells to LPS. On the contrary, overexpression of its endogenous inhibitor, heparanase-2 (HPSE2) was protective. The microfluidic chip flow model confirmed that HPSE2 prevented heparan sulfate shedding by HPSE1. Furthermore, heparan sulfate did not interfere with cluster of differentiation-14 (CD14)-dependent LPS binding, but instead reduced the presentation of the LPS to TLR4. HPSE2 reduced LPS-mediated TLR4 activation, subsequent cell signalling, and cytokine expression. HPSE2-overexpressing endothelial cells remained protected against LPS-mediated loss of cell-cell contacts. In vivo, expression of HPSE2 in plasma and kidney medullary capillaries was decreased in mouse sepsis model. We next applied purified HPSE2 in mice and observed decreases in TNFα and IL-6 plasma concentrations after intravenous LPS injections. Our data demonstrate the important role of heparan sulfate and the glycocalyx in endothelial cell activation and suggest a protective role of HPSE2 in microvascular inflammation. HPSE2 offers new options for protection against HPSE1-mediated endothelial damage and preventing microvascular disease.


Systemic Inflammation Precedes Microalbuminuria in Diabetes.

  • Florian G Scurt‎ et al.
  • Kidney international reports‎
  • 2019‎

The aim of the case-control study was to investigate if serum biomarkers indicative of vascular inflammation and endothelial dysfunction can predict the development of microalbuminuria in patients with diabetes mellitus type 2.


Sulfatases, in Particular Sulf1, Are Important for the Integrity of the Glomerular Filtration Barrier in Zebrafish.

  • Heiko Schenk‎ et al.
  • BioMed research international‎
  • 2019‎

The 6-O-endosulfatases (sulfs) are important enzymatic components involved in the regulation of heparan sulfate by altering the sulfatation pattern. Specifically in the kidney, sulfs have been implicated in the glomerular podocyte-endothelial cell crosstalk and in the preservation of the glomerular filtration barrier (GFB) in different mouse models. Since it has been shown that in zebrafish larvae, Sulf1, Sulf2a, and Sulf2b are expressed in the pronephric kidney we set out to establish if a reduction in sulf expression leads to GFB dysfunction. Here, we show that a reduced sulf expression following morpholino (MO) induced knockdown in zebrafish larvae promotes damage to the GFB leading to renal plasma protein loss from the circulation. Moreover, a combined knockdown of Sulf1, Sulf2a, and Sulf2b is associated with severe morphologic changes including narrowing of the fenestration between glomerular endothelial cells as well as thickening of the glomerular basement membrane and podocyte foot process effacement, suggesting that glomerular damage is an underlying cause of the circulatory protein loss observed after MO injection. Additionally, we show that a decrease in sulf expression reduces the bioavailability of VegfA in the glomerulus of the pronephros, which may contribute to the structural changes observed in the glomeruli of morphant fish. Furthermore, consistent with previous results, knockdown of the sulfs is associated with arteriovenous malformations in particular in the tail region of the larvae. Overall, taken together our results suggest that 6-O-endosulfatases are important in the preservation of GFB integrity and a reduction in their expression levels induces phenotypic changes that are indicative of renal protein loss.


Identification of specific Tie2 cleavage sites and therapeutic modulation in experimental sepsis.

  • Temitayo O Idowu‎ et al.
  • eLife‎
  • 2020‎

Endothelial Tie2 signaling plays a pivotal role in vascular barrier maintenance at baseline and after injury. We previously demonstrated that a sharp drop in Tie2 expression observed across various murine models of critical illnesses is associated with increased vascular permeability and mortality. Matrix metalloprotease (MMP)-14-mediated Tie2 ectodomain shedding has recently been recognized as a possible mechanism for Tie2 downregulation in sepsis. Here, we identified the exact MMP14-mediated Tie2 ectodomain cleavage sites and could show that pharmacological MMP14 blockade in experimental murine sepsis exerts barrier protective and anti-inflammatory effects predominantly through the attenuation of Tie2 cleavage to improve survival both in a pre-treatment and rescue approach. Overall, we show that protecting Tie2 shedding might offer a new therapeutic opportunity for the treatment of septic vascular leakage.


Role of endothelial microRNA 155 on capillary leakage in systemic inflammation.

  • Valerie Etzrodt‎ et al.
  • Critical care (London, England)‎
  • 2021‎

Capillary leakage is a key contributor to the pathological host response to infections. The underlying mechanisms remain incompletely understood, and the role of microRNAs (MIR) has not been investigated in detail. We hypothesized that specific MIRs might be regulated directly in the endothelium thereby contributing to vascular leakage.


Diffusion-Weighted Imaging and Mapping of T1 and T2 Relaxation Time for Evaluation of Chronic Renal Allograft Rejection in a Translational Mouse Model.

  • Martina Schmidbauer‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

We hypothesized that multiparametric MRI is able to non-invasively assess, characterize and monitor renal allograft pathology in a translational mouse model of chronic allograft rejection. Chronic rejection was induced by allogenic kidney transplantation (ktx) of BALB/c-kidneys into C57BL/6-mice (n = 23). Animals after isogenic ktx (n = 18) and non-transplanted healthy animals (n = 22) served as controls. MRI sequences (7T) were acquired 3 and 6 weeks after ktx and quantitative T1, T2 and apparent diffusion coefficient (ADC) maps were calculated. In addition, in a subset of animals, histological changes after ktx were evaluated. Chronic rejection was associated with a significant prolongation of T1 time compared to isogenic ktx 3 (1965 ± 53 vs. 1457 ± 52 ms, p < 0.001) and 6 weeks after surgery (1899 ± 79 vs. 1393 ± 51 ms, p < 0.001). While mean T2 times and ADC were not significantly different between allogenic and isogenic kidney grafts, histogram-based analysis of ADC revealed significantly increased tissue heterogeneity in allografts at both time points (standard derivation/entropy/interquartile range, p < 0.05). Correspondingly, histological analysis showed severe inflammation, graft fibrosis and tissue heterogeneity in allogenic but not in isogenic kidney grafts. In conclusion, renal diffusion weighted imaging and mapping of T2 and T1 relaxation times enable detection of chronic renal allograft rejection in mice. The combined quantitative assessment of mean values and histograms provides non-invasive information of chronic changes in renal grafts and allows longitudinal monitoring.


Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia.

  • Tamar Kapanadze‎ et al.
  • Theranostics‎
  • 2019‎

Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes.


Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo.

  • Shuwang Ge‎ et al.
  • PloS one‎
  • 2014‎

Interleukin (IL)-17A signaling via Interleukin 17 receptor A (Il17ra) contributes to the inflammatory host response by inducing recruitment of innate immune cells, but also plays a role in homeostatic neutrophilic granulocyte regulation. Monocytes, the other main innate immune cell, have a longer life span and can pursue multiple differentiation pathways towards tissue macrophages. Monocytes are divided into two subpopulations by expression of the Ly6C/Gr1 surface marker in mice. We here investigated the role of Il17ra in monocyte homeostasis and macrophage generation. In Il17ra(-/-) and in mixed bone marrow chimeric wt/Il17ra(-/-) mice, the concentrations of circulating Il17ra(-/-) Gr1(low) monocytes were significantly decreased compared to wt cells. Pulmonary, splenic and resident peritoneal Il17ra(-/-) macrophages were significantly fewer than of wt origin. Bone marrow progenitor and monocyte numbers were equal, but the proportion of Il17ra(-/-) Gr1(low) monocytes was already decreased at bone marrow level. After monocyte depletion, initial Gr1(high) and Gr1(low) monocyte regeneration of Il17ra(-/-) and wt cells was very similar. However, Il17ra(-/-) Gr1(low) counts were not sustained. After labeling with either fluorescent beads or BrdU, Il17ra(-/-) Gr1(high) monocyte transition to Gr1(low) cells was not detectable unlike wt cells. Monocyte recruitment in acute peritonitis, which is known to be largely due to Gr1(high) cell migration, was unaffected in an identical environment. Unilateral ureteral obstruction induces a less acute inflammatory and fibrotic kidney injury. Compared to wt cells in the same environment, Il17ra(-/-) macrophage accumulation in the kidney was decreased. In the absence of Il17ra on all myeloid cells, renal fibrosis was significantly attenuated. Our data show that Il17ra modulates Gr1(low) monocyte counts and suggest defective Gr1(high) to Gr1(low) monocyte transition as an underlying mechanism. Lack of Il17ra altered homeostatic tissue macrophage formation and diminished renal inflammation and fibrosis. Il17ra appears to be a novel modulator of monocyte phenotype and possible therapeutic target in renal fibrosis.


In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells.

  • Birgit Berkenkamp‎ et al.
  • PloS one‎
  • 2014‎

Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC). Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a), senescence associated β-galactosidase, and γH2AX(+)/Ki-67(-) cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: