Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 119 papers

Regulation Network of Colorectal-Cancer-Specific Enhancers in the Progression of Colorectal Cancer.

  • Bohan Chen‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer-promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.


Whole-Transcriptome Sequence Analysis of Verbena bonariensis in Response to Drought Stress.

  • Bei Wang‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Drought is an important abiotic factor that threatens the growth and development of plants. Verbena bonariensis is a widely used landscape plant with a very high ornamental value. We found that Verbena has drought tolerance in production practice, so in order to delve into its mechanism of drought resistance and screen out its drought-resistance genes, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze Verbena transcription response to drought stress. By high-throughput sequencing with Illumina Hiseq Xten, a total of 44.59 Gb clean data was obtained from T01 (control group) and T02 (drought experiment group). After assembly, 111,313 unigenes were obtained, and 53,757 of them were annotated by compared databases. In this study, 4829 differentially expressed genes were obtained, of which 4165 were annotated. We performed GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses, and explored a lot of differently expressed genes related to plant energy production, hormone synthesis, cell signal transduction, and metabolism to understand the stress response of Verbena in drought stress. In addition, we also found that a series of TFs related to drought-resistance of Verbena and provide excellent genetic resources for improving the drought tolerance of crops.


The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes.

  • Min Zhou‎ et al.
  • BMC genomics‎
  • 2019‎

Heavy metal ATPases (HMAs) are responsible for Cd translocation and play a primary role in Cd detoxification in various plant species. However, the characteristics of HMAs and the regulatory mechanisms between HMAs and microRNAs in wheat (Triticum aestivum L) remain unknown.


Transcriptome-wide identification and characterization of the Sox gene family and microsatellites for Corbicula fluminea.

  • Chuankun Zhu‎ et al.
  • PeerJ‎
  • 2019‎

The Asian clam, Corbicula fluminea, is a commonly consumed small freshwater bivalve in East Asia. However, available genetic information of this clam is still limited. In this study, the transcriptome of female C. fluminea was sequenced using the Illumina HiSeq 2500 platform. A total of 89,563 unigenes were assembled with an average length of 859 bp, and 36.7% of them were successfully annotated. Six members of Sox gene family namely SoxB1, SoxB2, SoxC, SoxD, SoxE and SoxF were identified. Based on these genes, the divergence time of C. fluminea was estimated to be around  476 million years ago. Furthermore, a total of 3,117 microsatellites were detected with a distribution density of 1:12,960 bp. Fifty of these microsatellites were randomly selected for validation, and 45 of them were successfully amplified with 31 polymorphic ones. The data obtained in this study will provide useful information for future genetic and genomic studies in C. fluminea.


Transcriptomic responses to drought stress in Polygonatum kingianum tuber.

  • Huali Qian‎ et al.
  • BMC plant biology‎
  • 2021‎

Polygonatum kingianum Coll. et Hemsl. is an important plant in Traditional Chinese Medicine. The extracts from its tubers are rich in polysaccharides and other metabolites such as saponins. It is a well-known concept that growing medicinal plants in semi-arid (or drought stress) increases their natural compounds concentrations. This study was conducted to explore the morpho-physiological responses of P. kingianum plants and transcriptomic signatures of P. kingianum tubers exposed to mild, moderate, and severe drought and rewatering.


Immunological regulation by a β-adrenergic-like octopamine receptor gene in crowded larvae of the oriental Armyworm, Mythmina separata.

  • Hailong Kong‎ et al.
  • Developmental and comparative immunology‎
  • 2020‎

Recent reports demonstrate that octopamine plays an important immunological role in crowded larvae of the Oriental Armyworm, Mythmina separata. We identified an octopamine receptor, the β-adrenergic-like gene (designated MsOctβ2R), with a 1191 bp open reading frame that encodes 396 amino acids and contains seven conserved hydrophobic transmembrane domains. Multiple sequence alignments and a phylogenetic analysis indicated that MsOctβ2R was orthologous to Octβ2R that is present in other lepidopterans. MsOctβ2R was expressed throughout all developmental stages with higher relative expression during the fourth instar and adult stages. MsOctβ2R was highly expressed in the ventral nerve cord and the fat body relative to other examined tissues. Elevated MsOctβ2R expression was observed in larvae that were under higher-density conditions (7 and 10 larvae per jar). Silencing MsOctβ2R expression via dsRNA injections in larvae from higher-density conditions significantly decreased phenoloxidase (PO) and lysozyme activity, total haemocyte counts, and survival rates against Beauveria bassiana infections (54.06%, 9.91%, 36.22%, and 23.53%, respectively) when compared with control larvae. These results suggest that high-density conditions might alter prophylactic immunity in larvae by regulating the MsOctβ2R gene in M. separara and provide new insights into density-dependent prophylaxis in insects.


Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis).

  • Hailong Kong‎ et al.
  • PloS one‎
  • 2016‎

There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions.


Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis).

  • Ning Liu‎ et al.
  • PloS one‎
  • 2013‎

Macrotermitinae (fungus-cultivating termites) are major decomposers in tropical and subtropical areas of Asia and Africa. They have specifically evolved mutualistic associations with both a Termitomyces fungi on the nest and a gut microbiota, providing a model system for probing host-microbe interactions. Yet the symbiotic roles of gut microbes residing in its major feeding caste remain largely undefined. Here, by pyrosequencing the whole gut metagenome of adult workers of a fungus-cultivating termite (Odontotermes yunnanensis), we showed that it did harbor a broad set of genes or gene modules encoding carbohydrate-active enzymes (CAZymes) relevant to plant fiber degradation, particularly debranching enzymes and oligosaccharide-processing enzymes. Besides, it also contained a considerable number of genes encoding chitinases and glycoprotein oligosaccharide-processing enzymes for fungal cell wall degradation. To investigate the metabolic divergence of higher termites of different feeding guilds, a SEED subsystem-based gene-centric comparative analysis of the data with that of a previously sequenced wood-feeding Nasutitermes hindgut microbiome was also attempted, revealing that SEED classifications of nitrogen metabolism, and motility and chemotaxis were significantly overrepresented in the wood-feeder hindgut metagenome, while Bacteroidales conjugative transposons and subsystems related to central aromatic compounds metabolism were apparently overrepresented here. This work fills up our gaps in understanding the functional capacities of fungus-cultivating termite gut microbiota, especially their roles in the symbiotic digestion of lignocelluloses and utilization of fungal biomass, both of which greatly add to existing understandings of this peculiar symbiosis.


Taxonomic and functional shifts of gut microbiome in immunoglobulin A vasculitis children and their mothers.

  • Yijia Liang‎ et al.
  • Frontiers in pediatrics‎
  • 2024‎

To examine the gut microbiota characteristics in children with immunoglobulin A vasculitis and their interrelationships with the host, while evaluate the vertical inheritance of microbiota in the development and progression of IgA vasculitis.


Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress.

  • Ke Wang‎ et al.
  • BMC genomics‎
  • 2018‎

Chrysanthemum is one kind of ornamental plant well-known and widely used in the world. However, its quality and production were severely affected by low temperature conditions in winter and early spring periods. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze chrysanthemum (Dendranthema grandiflorum) transcription response to low temperature.


Characterization of the Transcriptional Complexity of the Receptive and Pre-receptive Endometria of Dairy Goats.

  • Lei Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729-77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.


The dirigent multigene family in Isatis indigotica: gene discovery and differential transcript abundance.

  • Qing Li‎ et al.
  • BMC genomics‎
  • 2014‎

Isatis indigotica Fort. is one of the most commonly used traditional Chinese medicines. Its antiviral compound is a kind of lignan, which is formed with the action of dirigent proteins (DIR). DIR proteins are members of a large family of proteins which impart stereoselectivity on the phenoxy radical-coupling reaction, yielding optically active lignans from two molecules of E-coniferyl alcohol. They exist in almost every vascular plant. However, the DIR and DIR-like protein gene family in I. indigotica has not been analyzed in detail yet. This study focuses on discovery and analysis of this protein gene family in I. indigotica for the first time.


A chromosome-level reference genome of the hornbeam, Carpinus fangiana.

  • Xiaoyue Yang‎ et al.
  • Scientific data‎
  • 2020‎

Betulaceae, the birch family, comprises six living genera and over 160 species, many of which are economically valuable. To deepen our knowledge of Betulaceae species, we have sequenced the genome of a hornbeam, Carpinus fangiana, which belongs to the most species-rich genus of the Betulaceae subfamily Coryloideae. Based on over 75 Gb (~200x) of high-quality next-generation sequencing data, we assembled a 386.19 Mb C. fangiana genome with contig N50 and scaffold N50 sizes of 35.32 kb and 1.91 Mb, respectively. Furthermore, 357.84 Mb of the genome was anchored to eight chromosomes using over 50 Gb (~130x) Hi-C sequencing data. Transcriptomes representing six tissues were sequenced to facilitate gene annotation, and over 5.50 Gb high-quality data were generated for each tissue. The structural annotation identified a total of 27,381 protein-coding genes in the assembled genome, of which 94.36% were functionally annotated. Additionally, 4,440 non-coding genes were predicted.


The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development.

  • Ming Li‎ et al.
  • BMC plant biology‎
  • 2019‎

Sweetpotato (Ipomoea batatas (L.) Lam.) is the seventh most important crop in the world and is mainly cultivated for its underground storage root (SR). The genetic studies of this species have been hindered by a lack of high-quality reference sequence due to its complex genome structure. Diploid Ipomoea trifida is the closest relative and putative progenitor of sweetpotato, which is considered a model species for sweetpotato, including genetic, cytological, and physiological analyses.


A genome-wide analysis of the auxin/indole-3-acetic acid gene family in hexaploid bread wheat (Triticum aestivum L.).

  • Linyi Qiao‎ et al.
  • Frontiers in plant science‎
  • 2015‎

The Auxin/indole-3-acetic acid (Aux/IAA) gene family plays key roles in the primary auxin-response process and controls a number of important traits in plants. However, the characteristics of the Aux/IAA gene family in hexaploid bread wheat (Triticum aestivum L.) have long been unknown. In this study, a comprehensive identification of the Aux/IAA gene family was performed using the latest draft genome sequence of the bread wheat "Chinese Spring." Thirty-four Aux/IAA genes were identified, 30 of which have duplicated genes on the A, B or D sub-genome, with a total of 84 Aux/IAA sequences. These predicted Aux/IAA genes were non-randomly distributed in all the wheat chromosomes except for chromosome 2D. The information of wheat Aux/IAA proteins is also described. Based on an analysis of phylogeny, expression and adaptive evolution, we prove that the Aux/IAA family in wheat has been replicated twice in the two allopolyploidization events of bread wheat, when the tandem duplication also occurred. The duplicated genes have undergone an evolutionary process of purifying selection, resulting in the high conservation of copy genes among sub-genomes and functional redundancy among several members of the TaIAA family. However, functional divergence probably existed in most TaIAA members due to the diversity of the functional domain and expression pattern. Our research provides useful information for further research into the function of Aux/IAA genes in wheat.


A chromosome-level genome assembly of the redfin culter (Chanodichthys erythropterus).

  • Shihu Zhao‎ et al.
  • Scientific data‎
  • 2022‎

Chanodichthys erythropterus is a fierce carnivorous fish widely found in East Asian waters. It is not only a popular food fish in China, it is also a representative victim of overfishing. Genetic breeding programs launched to meet market demands urgently require high-quality genomes to facilitate genomic selection and genetic research. In this study, we constructed a chromosome-level reference genome of C. erythropterus by taking advantage of long-read single-molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi-C. The 1.085 Gb C. erythropterus genome was assembled from 132 Gb of Nanopore sequence. The assembled genome represents 98.5% completeness (BUSCO) with a contig N50 length of 23.29 Mb. The contigs were clustered and ordered onto 24 chromosomes covering roughly 99.49% of the genome assembly with Hi-C data. Additionally, 33,041 (98.0%) genes were functionally annotated from a total of 33,706 predicted protein-coding sequences by combining transcriptome data from seven tissues. This high-quality assembled genome will be a precious resource for future molecular breeding and functional genomics research of C. erythropterus.


Identification of a ceRNA Network in Lung Adenocarcinoma Based on Integration Analysis of Tumor-Associated Macrophage Signature Genes.

  • Lei Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

As research into tumor-immune interactions progresses, immunotherapy is becoming the most promising treatment against cancers. The tumor microenvironment (TME) plays the key role influencing the efficacy of anti-tumor immunotherapy, in which tumor-associated macrophages (TAMs) are the most important component. Although evidences have emerged revealing that competing endogenous RNAs (ceRNAs) were involved in infiltration, differentiation and function of immune cells by regulating interactions among different varieties of RNAs, limited comprehensive investigation focused on the regulatory mechanism between ceRNA networks and TAMs. In this study, we aimed to utilize bioinformatic approaches to explore how TAMs potentially influence the prognosis and immunotherapy of lung adenocarcinoma (LUAD) patients. Firstly, according to TAM signature genes, we constructed a TAM prognostic risk model by the least absolute shrinkage and selection operator (LASSO) cox regression in LUAD patients. Then, differential gene expression was analyzed between high- and low-risk patients. Weighted gene correlation network analysis (WGCNA) was utilized to identify relevant gene modules correlated with clinical characteristics and prognostic risk score. Moreover, ceRNA networks were built up based on predicting regulatory pairs in differentially expressed genes. Ultimately, by synthesizing information of protein-protein interactions (PPI) analysis and survival analysis, we have successfully identified a core regulatory axis: LINC00324/miR-9-5p (miR-33b-5p)/GAB3 (IKZF1) which may play a pivotal role in regulating TAM risk and prognosis in LUAD patients. The present study contributes to a better understanding of TAMs associated immunosuppression in the TME and provides novel targets and regulatory pathway for anti-tumor immunotherapy.


Disrupted folate metabolism with anesthesia leads to myelination deficits mediated by epigenetic regulation of ERMN.

  • Lei Zhang‎ et al.
  • EBioMedicine‎
  • 2019‎

Exposure to anesthetics during early life may impair cognitive functions. However, the underlying mechanisms remain largely unknown. We set out to determine effects of sevoflurane anesthesia on folate metabolism and myelination in young non-human primates, mice and children.


Analyzing the Interactions of mRNAs and ncRNAs to Predict Competing Endogenous RNA Networks in Osteosarcoma Chemo-Resistance.

  • Kun-Peng Zhu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

Chemo-resistance is a huge obstacle encountered in the osteosarcoma (OS) treatment. Protein-coding mRNAs, as well as non-coding RNAs (ncRNAs), including long ncRNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA), have been demonstrated to play an essential role in the regulation of cancer biology. However, the comprehensive expression profile and competing endogenous RNA (ceRNA) regulatory network between mRNAs and ncRNAs in the OS chemo-resistance still remain unclear. In the current study, we developed whole-transcriptome sequencing (RNA sequencing [RNA-seq]) in the three paired multi-drug chemo-resistant and chemo-sensitive OS cell lines to comprehensively identify differentially expressed lncRNAs, circRNAs, miRNAs, and mRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed for mRNAs with significantly different expression. Then the ceRNA networks combining lncRNAs, circRNAs, miRNAs, and mRNAs were predicted and constructed on the basis of the authoritative miRanda and TargetScan databases combined with the widely accepted vital drug resistance-related genes and signal transduction pathways. In addition, two constructed ceRNA regulatory pathways, lncRNAMEG3/hsa-miR-200b-3p/AKT2 and hsa_circ_0001258/hsa-miR-744-3p/GSTM2, were randomly selected and validated by real-time qPCR, RNA immunoprecipitation (RIP), RNA pull-down assay, and dual luciferase reporter gene system. Taken together, our findings may provide new evidence for the underlying mechanism of OS chemo-resistance and uncover some novel targets for reversing it.


Modulation of Calcium Homeostasis May Be Associated with Susceptibility to Renal Cell Carcinoma in Diabetic Nephropathy Rats.

  • Yueming Luo‎ et al.
  • Cancer management and research‎
  • 2020‎

Clinical studies have indicated a relationship between diabetic nephropathy (DN) and the incidence and prevalence of renal cell carcinoma (RCC). However, the mechanism linking diabetic nephropathy and renal cell carcinoma has not yet to be identified.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: