Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 105 papers

Diet-dependent natriuretic peptide receptor C expression in adipose tissue is mediated by PPARγ via long-range distal enhancers.

  • Fubiao Shi‎ et al.
  • The Journal of biological chemistry‎
  • 2021‎

The cardiac natriuretic peptides (NPs) are well established as regulators of blood pressure and fluid volume, but they also stimulate adipocyte lipolysis and control the gene program of nonshivering thermogenesis in brown adipose tissue. The NP "clearance" receptor C (NPRC) functions to clear NPs from the circulation via peptide internalization and degradation and thus is an important regulator of NP signaling and adipocyte metabolism. It is well known that the Nprc gene is highly expressed in adipose tissue and dynamically regulated upon nutrition and environmental changes. However, the molecular basis for how Nprc gene expression is regulated is still poorly understood. Here, we identified the nuclear receptor transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) as a transcriptional regulator of Nprc expression in mouse adipocytes. During 3T3-L1 adipocyte differentiation, levels of Nprc expression increase in parallel with PPARγ induction. Rosiglitazone, a classic PPARγ agonist, increases, whereas siRNA knockdown of PPARγ reduces, Nprc expression in 3T3-L1 adipocytes. By using chromosome conformation capture and luciferase reporter assays, we demonstrate that PPARγ controls Nprc gene expression in adipocytes through its long-range distal enhancers. Furthermore, the induction of Nprc expression in adipose tissue during high-fat diet feeding is found to be associated with increased PPARγ enhancer activity. Our findings define PPARγ as a mediator of adipocyte Nprc gene expression and establish a new connection between PPARγ and the control of adipocyte NP signaling in obesity.


The Transcription Factor EB (TFEB) Sensitizes the Heart to Chronic Pressure Overload.

  • Sebastian Wundersitz‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The transcription factor EB (TFEB) promotes protein degradation by the autophagy and lysosomal pathway (ALP) and overexpression of TFEB was suggested for the treatment of ALP-related diseases that often affect the heart. However, TFEB-mediated ALP induction may perturb cardiac stress response. We used adeno-associated viral vectors type 9 (AAV9) to overexpress TFEB (AAV9-Tfeb) or Luciferase-control (AAV9-Luc) in cardiomyocytes of 12-week-old male mice. Mice were subjected to transverse aortic constriction (TAC, 27G; AAV9-Luc: n = 9; AAV9-Tfeb: n = 14) or sham (AAV9-Luc: n = 9; AAV9-Tfeb: n = 9) surgery for 28 days. Heart morphology, echocardiography, gene expression, and protein levels were monitored. AAV9-Tfeb had no effect on cardiac structure and function in sham animals. TAC resulted in compensated left ventricular hypertrophy in AAV9-Luc mice. AAV9-Tfeb TAC mice showed a reduced LV ejection fraction and increased left ventricular diameters. Morphological, histological, and real-time PCR analyses showed increased heart weights, exaggerated fibrosis, and higher expression of stress markers and remodeling genes in AAV9-Tfeb TAC compared to AAV9-Luc TAC. RNA-sequencing, real-time PCR and Western Blot revealed a stronger ALP activation in the hearts of AAV9-Tfeb TAC mice. Cardiomyocyte-specific TFEB-overexpression promoted ALP gene expression during TAC, which was associated with heart failure. Treatment of ALP-related diseases by overexpression of TFEB warrants careful consideration.


Viral cGAMP nuclease reveals the essential role of DNA sensing in protection against acute lethal virus infection.

  • Bruno Hernáez‎ et al.
  • Science advances‎
  • 2020‎

Cells contain numerous immune sensors to detect virus infection. The cyclic GMP-AMP (cGAMP) synthase (cGAS) recognizes cytosolic DNA and activates innate immune responses via stimulator of interferon genes (STING), but the impact of DNA sensing pathways on host protective responses has not been fully defined. We demonstrate that cGAS/STING activation is required to resist lethal poxvirus infection. We identified viral Schlafen (vSlfn) as the main STING inhibitor, and ectromelia virus was severely attenuated in the absence of vSlfn. Both vSlfn-mediated virulence and STING inhibitory activity were mapped to the recently discovered poxin cGAMP nuclease domain. Animals were protected from subcutaneous, respiratory, and intravenous infection in the absence of vSlfn, and interferon was the main antiviral protective mechanism controlled by the DNA sensing pathway. Our findings support the idea that manipulation of DNA sensing is an efficient therapeutic strategy in diseases triggered by viral infection or tissue damage-mediated release of self-DNA.


Dynamic changes to lipid mediators support transitions among macrophage subtypes during muscle regeneration.

  • Nikolas Giannakis‎ et al.
  • Nature immunology‎
  • 2019‎

Muscle damage elicits a sterile immune response that facilitates complete regeneration. Here, we used mass spectrometry-based lipidomics to map the mediator lipidome during the transition from inflammation to resolution and regeneration in skeletal muscle injury. We observed temporal regulation of glycerophospholipids and production of pro-inflammatory lipid mediators (for example, leukotrienes and prostaglandins) and specialized pro-resolving lipid mediators (for example, resolvins and lipoxins) that were modulated by ibuprofen. These time-dependent profiles were recapitulated in sorted neutrophils and Ly6Chi and Ly6Clo muscle-infiltrating macrophages, with a distinct pro-resolving signature observed in Ly6Clo macrophages. RNA sequencing of macrophages stimulated with resolvin D2 showed similarities to transcriptional changes found during the temporal transition from Ly6Chi macrophage to Ly6Clo macrophage. In vivo, resolvin D2 increased Ly6Clo macrophages and functional improvement of the regenerating muscle. These results reveal dynamic lipid mediator signatures of innate immune cells and provide a proof of concept for their exploitable effector roles in muscle regeneration.


Cell type-specific loops linked to RNA polymerase II elongation in human neural differentiation.

  • Katelyn R Titus‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitors (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNAPolII initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops, promoter-promoter loops, or unlooped. Genes transitioning from repression to RNAPolII initiation exhibit slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNAPolII-mediated elongation during neural cell fate transitions.


Extensive and functional overlap of the STAT6 and RXR cistromes in the active enhancer repertoire of human CD14+ monocyte derived differentiating macrophages.

  • Zsolt Czimmerer‎ et al.
  • Molecular and cellular endocrinology‎
  • 2018‎

Macrophages are able to differentiate into classically polarized (M1) or alternatively polarized (M2) states upon encountering pro-inflammatory cytokines such as interferon (IFN) γ or anti-inflammatory cytokines such as interleukin (IL) -4/IL-13, respectively. Moreover, macrophages are known to regulate lipid metabolism via multiple members of the nuclear hormone receptor family, including the retinoid X receptors (RXR). It has been also documented that cytokines are able to modulate macrophage responses to lipid signals but the nature of these interactions and the underlying mechanisms of these processes especially at the level of the chromatinized genome are not well understood. Previous work from our laboratory suggested that STAT6 is a facilitator of nuclear receptor mediated transcriptional activity acting at the genome level. This prompted us to investigate genome-wide DNA binding events and the development of cistromes in human CD14+ monocyte-derived macrophages upon exposure to IL-4. We determined the impact of IL-4 on the PU.1, RXR and STAT6 cistromes within the active enhancer regions marked by H3K27-acetylation using chromatin immunoprecipitation followed by deep sequencing and integrated bioinformatics analyses. We found that about 2/3rd of the IL-4 induced STAT6 peaks co-localized with RXR peaks. These STAT6/RXR co-peaks differed at least in part from the non-overlapping RXR peaks regarding the most enriched de novo transcription factor binding motifs. Interestingly, RXR-binding was not regulated at the STAT6/RXR co-bound enhancers following IL-4 stimulation, but differential enhancer interactions were observed between the IL-4/STAT6 and RXR signaling pathways acting in a gene selective manner. Our results suggest that there is a novel, so far uncharacterized cistromic crosstalk between RXR and STAT6 that is likely to contribute to the formation of the active enhancer repertoire, transcriptome and differential signal-specific gene regulation of polarized macrophages.


Chromatin accessibility dynamics across C. elegans development and ageing.

  • Jürgen Jänes‎ et al.
  • eLife‎
  • 2018‎

An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here, we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one Caenorhabditis elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.


Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family.

  • Christopher Weidner‎ et al.
  • PloS one‎
  • 2013‎

Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders.


Deficient methylation and formylation of mt-tRNA(Met) wobble cytosine in a patient carrying mutations in NSUN3.

  • Lindsey Van Haute‎ et al.
  • Nature communications‎
  • 2016‎

Epitranscriptome modifications are required for structure and function of RNA and defects in these pathways have been associated with human disease. Here we identify the RNA target for the previously uncharacterized 5-methylcytosine (m(5)C) methyltransferase NSun3 and link m(5)C RNA modifications with energy metabolism. Using whole-exome sequencing, we identified loss-of-function mutations in NSUN3 in a patient presenting with combined mitochondrial respiratory chain complex deficiency. Patient-derived fibroblasts exhibit severe defects in mitochondrial translation that can be rescued by exogenous expression of NSun3. We show that NSun3 is required for deposition of m(5)C at the anticodon loop in the mitochondrially encoded transfer RNA methionine (mt-tRNA(Met)). Further, we demonstrate that m(5)C deficiency in mt-tRNA(Met) results in the lack of 5-formylcytosine (f(5)C) at the same tRNA position. Our findings demonstrate that NSUN3 is necessary for efficient mitochondrial translation and reveal that f(5)C in human mitochondrial RNA is generated by oxidative processing of m(5)C.


Homozygous loss-of-function variants in European cosmopolitan and isolate populations.

  • Vera B Kaiser‎ et al.
  • Human molecular genetics‎
  • 2015‎

Homozygous loss of function (HLOF) variants provide a valuable window on gene function in humans, as well as an inventory of the human genes that are not essential for survival and reproduction. All humans carry at least a few HLOF variants, but the exact number of inactivated genes that can be tolerated is currently unknown—as are the phenotypic effects of losing function for most human genes. Here, we make use of 1432 whole exome sequences from five European populations to expand the catalogue of known human HLOF mutations; after stringent filtering of variants in our dataset, we identify a total of 173 HLOF mutations, 76 (44%) of which have not been observed previously. We find that population isolates are particularly well suited to surveys of novel HLOF genes because individuals in such populations carry extensive runs of homozygosity, which we show are enriched for novel, rare HLOF variants. Further, we make use of extensive phenotypic data to show that most HLOFs, ascertained in population-based samples, appear to have little detectable effect on the phenotype. On the contrary, we document several genes directly implicated in disease that seem to tolerate HLOF variants. Overall HLOF genes are enriched for olfactory receptor function and are expressed in testes more often than expected, consistent with reduced purifying selection and incipient pseudogenisation.


A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding.

  • Bruno Hernáez‎ et al.
  • Nature communications‎
  • 2018‎

Soluble cytokine decoy receptors are potent immune modulatory reagents with therapeutic applications. Some virus-encoded secreted cytokine receptors interact with glycosaminoglycans expressed at the cell surface, but the biological significance of this activity in vivo is poorly understood. Here, we show the type I interferon binding protein (IFNα/βBP) encoded by vaccinia and ectromelia viruses requires of this cell binding activity to confer full virulence to these viruses and to retain immunomodulatory activity. Expression of a variant form of the IFNα/βBP that inhibits IFN activity, but does not interact with cell surface glycosaminoglycans, results in highly attenuated viruses with a virulence similar to that of the IFNα/βBP deletion mutant viruses. Transcriptomics analysis and infection of IFN receptor-deficient mice confirmed that the control of IFN activity is the main function of the IFNα/βBP in vivo. We propose that retention of secreted cytokine receptors at the cell surface may largely enhance their immunomodulatory activity.


The Transcription Factor STAT6 Mediates Direct Repression of Inflammatory Enhancers and Limits Activation of Alternatively Polarized Macrophages.

  • Zsolt Czimmerer‎ et al.
  • Immunity‎
  • 2018‎

The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli.


A versatile method to design stem-loop primer-based quantitative PCR assays for detecting small regulatory RNA molecules.

  • Zsolt Czimmerer‎ et al.
  • PloS one‎
  • 2013‎

Short regulatory RNA-s have been identified as key regulators of gene expression in eukaryotes. They have been involved in the regulation of both physiological and pathological processes such as embryonal development, immunoregulation and cancer. One of their relevant characteristics is their high stability, which makes them excellent candidates for use as biomarkers. Their number is constantly increasing as next generation sequencing methods reveal more and more details of their synthesis. These novel findings aim for new detection methods for the individual short regulatory RNA-s in order to be able to confirm the primary data and characterize newly identified subtypes in different biological conditions. We have developed a flexible method to design RT-qPCR assays that are very sensitive and robust. The newly designed assays were tested extensively in samples from plant, mouse and even human formalin fixed paraffin embedded tissues. Moreover, we have shown that these assays are able to quantify endogenously generated shRNA molecules. The assay design method is freely available for anyone who wishes to use a robust and flexible system for the quantitative analysis of matured regulatory RNA-s.


Foam cell specific LXRα ligand.

  • Radmila Feldmann‎ et al.
  • PloS one‎
  • 2013‎

The liver X receptor α (LXRα) is a ligand-dependent nuclear receptor and the major regulator of reverse cholesterol transport in macrophages. This makes it an interesting target for mechanistic study and treatment of atherosclerosis.


Genome wide mapping reveals PDE4B as an IL-2 induced STAT5 target gene in activated human PBMCs and lymphoid cancer cells.

  • Zsuzsanna S Nagy‎ et al.
  • PloS one‎
  • 2013‎

IL-2 is the primary growth factor for promoting survival and proliferation of activated T cells that occurs following engagement of the Janus Kinase (JAK)1-3/and Signal Transducer and Activator of Transcription (STAT) 5 signaling pathway. STAT5 has two isoforms: STAT5A and STAT5B (commonly referred to as STAT5) which, in T cells, play redundant roles transcribing cell cycle and survival genes. As such, inhibition of STAT5 by a variety of mechanisms can rapidly induce apoptosis in certain lymphoid tumor cells, suggesting that it and its target genes represent therapeutic targets to control certain lymphoid diseases. To search for these molecules we aligned IL-2 regulated genes detected by Affymetrix gene expression microarrays with the STAT5 cistrome identified by chip-on-ChIP analysis in an IL-2-dependent human leukemia cell line, Kit225. Select overlapping genes were then validated using qRT(2)PCR medium-throughput arrays in human PHA-activated PBMCs. Of 19 putative genes, one key regulator of T cell receptor signaling, PDE4B, was identified as a novel target, which was readily up-regulated at the protein level (3 h) in IL-2 stimulated, activated human PBMCs. Surprisingly, only purified CD8+ primary T-cells expressed PDE4B, but not CD4+ cells. Moreover, PDE4B was found to be highly expressed in CD4+ lymphoid cancer cells, which suggests that it may represent a physiological role unique to the CD8+ and lymphoid cancer cells and thus might represent a target for pharmaceutical intervention for certain lymphoid diseases.


MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans.

  • Aniko Gal‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

The protein MSTO1 has been localized to mitochondria and linked to mitochondrial morphology, but its specific role has remained unclear. We identified a c.22G > A (p.Val8Met) mutation of MSTO1 in patients with minor physical abnormalities, myopathy, ataxia, and neurodevelopmental impairments. Lactate stress test and myopathological results suggest mitochondrial dysfunction. In patient fibroblasts, MSTO1 mRNA and protein abundance are decreased, mitochondria display fragmentation, aggregation, and decreased network continuity and fusion activity. These characteristics can be reversed by genetic rescue. Short-term silencing of MSTO1 in HeLa cells reproduced the impairment of mitochondrial morphology and dynamics observed in the fibroblasts without damaging bioenergetics. At variance with a previous report, we find MSTO1 to be localized in the cytoplasmic area with limited colocalization with mitochondria. MSTO1 interacts with the fusion machinery as a soluble factor at the cytoplasm-mitochondrial outer membrane interface. After plasma membrane permeabilization, MSTO1 is released from the cells. Thus, an MSTO1 loss-of-function mutation is associated with a human disorder showing mitochondrial involvement. MSTO1 likely has a physiologically relevant role in mitochondrial morphogenesis by supporting mitochondrial fusion.


DNA polymorphisms and haplotype patterns of transcription factors involved in barley endosperm development are associated with key agronomic traits.

  • Grit Haseneyer‎ et al.
  • BMC plant biology‎
  • 2010‎

Association mapping is receiving considerable attention in plant genetics for its potential to fine map quantitative trait loci (QTL), validate candidate genes, and identify alleles of interest. In the present study association mapping in barley (Hordeum vulgare L.) is investigated by associating DNA polymorphisms with variation in grain quality traits, plant height, and flowering time to gain further understanding of gene functions involved in the control of these traits. We focused on the four loci BLZ1, BLZ2, BPBF and HvGAMYB that play a role in the regulation of B-hordein expression, the major fraction of the barley storage protein. The association was tested in a collection of 224 spring barley accessions using a two-stage mixed model approach.


High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections.

  • Grit Haseneyer‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2008‎

The transcription factor GAMYB is involved in gibberellin signalling in cereal aleurone cells and in plant developmental processes. Nucleotide diversity of HvGAMYB and TaGAMYB was investigated in 155 barley (Hordeum vulgare) and 42 wheat (Triticum aestivum) accessions, respectively. Polymorphisms defined 18 haplotypes in the barley collection and 1, 7 and 3 haplotypes for the A, B, and D genomes of wheat, respectively. We found that (1) Hv- and TaGAMYB genes have identical structures. (2) Both genes show a high level of nucleotide identity (>95%) in the coding sequences and the distribution of polymorphisms is similar in both collections. At the protein level the functional domain is identical in both species. (3) GAMYB genes map to a syntenic position on chromosome 3. GAMYB genes are different in both collections with respect to the Tajima D statistic and linkage disequilibrium (LD). A moderate level of LD was observed in the barley collection. In wheat, LD is absolute between polymorphic sites, mostly located in the first intron, while it decays within the gene. Differences in Tajima D values might be due to a lower selection pressure on HvGAMYB, compared to its wheat orthologue. Altogether our results provide evidence that there have been only few evolutionary changes in Hv- and TaGAMYB. This confirms the close relationship between these species and also highlights the functional importance of this transcription factor.


Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing.

  • Daniela Numberger‎ et al.
  • Scientific reports‎
  • 2019‎

Wastewater treatment is crucial to environmental hygiene in urban environments. However, wastewater treatment plants (WWTPs) collect chemicals, organic matter, and microorganisms including pathogens and multi-resistant bacteria from various sources which may be potentially released into the environment via WWTP effluent. To better understand microbial dynamics in WWTPs, we characterized and compared the bacterial community of the inflow and effluent of a WWTP in Berlin, Germany using full-length 16S rRNA gene sequences, which allowed for species level determination in many cases and generally resolved bacterial taxa. Significantly distinct bacterial communities were identified in the wastewater inflow and effluent samples. Dominant operational taxonomic units (OTUs) varied both temporally and spatially. Disease associated bacterial groups were efficiently reduced in their relative abundance from the effluent by the WWTP treatment process, except for Legionella and Leptospira species which demonstrated an increase in relative proportion from inflow to effluent. This indicates that WWTPs, while effective against enteric bacteria, may enrich and release other potentially pathogenic bacteria into the environment. The taxonomic resolution of full-length 16S rRNA genes allows for improved characterization of potential pathogenic taxa and other harmful bacteria which is required to reliably assess health risk.


The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models.

  • Alina Klems‎ et al.
  • Nature communications‎
  • 2020‎

Arterial networks enlarge in response to increase in tissue metabolism to facilitate flow and nutrient delivery. Typically, the transition of a growing artery with a small diameter into a large caliber artery with a sizeable diameter occurs upon the blood flow driven change in number and shape of endothelial cells lining the arterial lumen. Here, using zebrafish embryos and endothelial cell models, we describe an alternative, flow independent model, involving enlargement of arterial endothelial cells, which results in the formation of large diameter arteries. Endothelial enlargement requires the GEF1 domain of the guanine nucleotide exchange factor Trio and activation of Rho-GTPases Rac1 and RhoG in the cell periphery, inducing F-actin cytoskeleton remodeling, myosin based tension at junction regions and focal adhesions. Activation of Trio in developing arteries in vivo involves precise titration of the Vegf signaling strength in the arterial wall, which is controlled by the soluble Vegf receptor Flt1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: