Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 226 papers

TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23).

  • Louise A Stephen‎ et al.
  • eLife‎
  • 2015‎

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse photoreceptors, as is common for JBTS proteins, and also in pericentriolar locations. We show that loss of TALPID3 (KIAA0586) function in animal models causes abnormal tissue polarity, centrosome length and orientation, and centriolar satellites. We propose that JBTS and other ciliopathies may in part result from cell polarity defects.


Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk.

  • Siddhartha P Kar‎ et al.
  • Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology‎
  • 2015‎

Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations.


In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis.

  • Sara Zanivan‎ et al.
  • Cell reports‎
  • 2013‎

Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression.


HOXA10 and HOXA13 sequence variations in human female genital malformations including congenital absence of the uterus and vagina.

  • Arif B Ekici‎ et al.
  • Gene‎
  • 2013‎

Congenital genital malformations occurring in the female population are estimated to be 5 per 1000 and associate with infertility, abortion, stillbirth, preterm delivery and other organ abnormalities. Complete aplasia of the uterus, cervix and upper vagina (Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome) has an incidence of 1 per 4000 female live births. The molecular etiology of congenital genital malformations including MRKH is unknown up to date. The homeobox (HOX) genes HOXA10 and HOXA13 are involved in the development of human genitalia. In this investigation, HOXA10 and HOXA13 genes of 20 patients with the MRKH syndrome, 7 non-MRKH patients with genital malformations and 53 control women were sequenced to assess for DNA variations. A total of 14 DNA sequence variations (10 novel and 4 known) within exonic and untranslated regions were detected in HOXA10 and HOXA13 among our cohorts. Four HOXA10 and two HOXA13 DNA sequence variations were found solely in patients with genital malformations. In addition to mutations resulting in synonymous amino acid substitutions, in the HOXA10 gene a missense mutation was identified and predicted by computer analysis as probably damaging to protein function in two non-MRKH patients, one with a bicornate and the other patient with a septated uterus. A novel exonic HOXA10 cytosine deletion was also identified in a non-MRKH patient with a septate uterus and renal malformations resulting in a premature stop codon and loss of the homeodomain helix 3/4. This cytosine deletion and the missense mutation in HOXA10 were analysed by real time PCR and sequencing, respectively, in two additional larger cohorts of 103 patients with MRKH and 109 non-MRKH patients with genital malformations. No other patients were found with the cytosine deletion however one additional patient was identified regarding the missense mutation. Rare DNA sequence variations in the HOXA10 gene could contribute to the misdevelopment of female internal genitalia.


Germline copy number variation and ovarian cancer survival.

  • Brooke L Fridley‎ et al.
  • Frontiers in genetics‎
  • 2012‎

Copy number variants (CNVs) have been implicated in many complex diseases. We examined whether inherited CNVs were associated with overall survival among women with invasive epithelial ovarian cancer. Germline DNA from 1,056 cases (494 deceased, average of 3.7 years follow-up) was interrogated with the Illumina 610 quad genome-wide array containing, after quality control exclusions, 581,903 single nucleotide polymorphisms (SNPs) and 17,917 CNV probes. Comprehensive analysis capitalized upon the strengths of three complementary approaches to CNV classification. First, to identify small CNVs, single markers were evaluated and, where associated with survival, consecutive markers were combined. Two chromosomal regions were associated with survival using this approach (14q31.3 rs2274736 p = 1.59 × 10(-6), p = 0.001; 22q13.31 rs2285164 p = 4.01 × 10(-5), p = 0.009), but were not significant after multiple testing correction. Second, to identify large CNVs, genome-wide segmentation was conducted to characterize chromosomal gains and losses, and association with survival was evaluated by segment. Four regions were associated with survival (1q21.3 loss p = 0.005, 5p14.1 loss p = 0.004, 9p23 loss p = 0.002, and 15q22.31 gain p = 0.002); however, again, after correcting for multiple testing, no regions were statistically significant, and none were in common with the single marker approach. Finally, to evaluate associations with general amounts of copy number changes across the genome, we estimated CNV burden based on genome-wide numbers of gains and losses; no associations with survival were observed (p > 0.40). Although CNVs that were not well-covered by the Illumina 610 quad array merit investigation, these data suggest no association between inherited CNVs and survival after ovarian cancer.


Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility "hot-spot".

  • Sharon E Johnatty‎ et al.
  • PLoS genetics‎
  • 2010‎

We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n=675) and controls (n=1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs-PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616-were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n=1,233 serous invasive cases; n=3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele>or=0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele=0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04-1.24) p=0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus.


Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region.

  • Matthias Ruebner‎ et al.
  • PloS one‎
  • 2013‎

Terminal differentiation of villous cytotrophoblasts (CT) ends in formation of the multinucleated syncytiotrophoblast representing the fetal-maternal interface. Aberrations during this cell-fusion process are associated with Intrauterine Growth Restriction (IUGR), Preeclampsia (PE) and High Elevated Liver and Low Platelets (HELLP) Syndrome. Syncytin-1, the envelope gene of the human Endogenous Retrovirus ERVW-1, is one of the most important genes involved in cell-fusion and showed decreased gene expression during these pathological pregnancies. The aim of this study was to determine the methylation pattern of the entire promoter of ERVW-1 and to correlate these findings with the expression profile of Syncytin-1 in the placental syndromes. 14 isolated villous cytotrophoblasts from control (n = 3), IUGR (n = 3), PE (n = 3), PE/IUGR (n = 3) and HELLP/IUGR (n = 2) placentae were used to determine the mean methylation level (ML) for the ERVW-1 promoter region. ML rose significantly from 29% in control CTs to 49% in IUGR, 53% in PE, 47% in PE/IUGR and 64% in HELLP/IUGR indicating an epigenetic down-regulation of Syncytin-1 by promoter hypermethylation. DNA demethylation of the trophoblast like cell lines BeWo, JEG-3 and JAR with 5-AZA-2'desoxycytidine (AZA) showed an increased Syncytin-1 expression and fusion ability in all cell lines. Promoter activity of the 5'LTR could be inhibited by hypermethylation 42-fold using a luciferase based reporter-gene assay. Finally overexpression of the methyltransferases DNMT3a and LSH could be responsible for a decreased Syncytin-1 expression by promoter hypermethylation of ERVW-1. Our study linked decreased Syncytin-1 expression to an epigenetic hypermethylation of the entire promoter of ERVW-1. Based on our findings we are predicting a broad aberrant epigenetic DNA-methylation pattern in pathological placentae affecting placentogenesis, but also the development of the fetus and the mother during pregnancy.


Bias of allele-sharing linkage statistics in the presence of intermarker linkage disequilibrium.

  • Ellen L Goode‎ et al.
  • BMC genetics‎
  • 2005‎

Current genome-wide linkage-mapping single-nucleotide polymorphism (SNP) panels with densities of 0.3 cM are likely to have increased intermarker linkage disequilibrium (LD) compared to 5-cM microsatellite panels. The resulting difference in haplotype frequencies versus that predicted may affect multipoint linkage analysis with ungenotyped founders; a common haplotype may be assumed to be rare, leading to inflation of identical-by-descent (IBD) allele-sharing estimates and evidence for linkage. Using data simulated for the Genetic Analysis Workshop 14, we assessed bias in allele-sharing measures and nonparametric linkage (NPL all) and Kong and Cox LOD (KC-LOD) scores in a targeted analysis of regions with and without LD and with and without genes. Using over 100 replicates, we found that if founders were not genotyped, multipoint IBD estimates and delta parameters were modestly inflated and NPL all and KC-LOD scores were biased upwards in the region with LD and no gene; rather than centering on the null, the mean NPL all and KC-LOD scores were 0.51 +/- 0.91 and 0.19 +/- 0.38, respectively. Reduction of LD by dropping markers reduced this upward bias. These trends were not seen in the non-LD region with no gene. In regions with genes (with and without LD), a slight loss in power with dropping markers was suggested. These results indicate that LD should be considered in dense scans; removal of markers in LD may reduce false-positive results although information may also be lost. Methods to address LD in a high-throughput manner are needed for efficient, robust genomic scans with dense SNPs.


Germline miRNA DNA variants and the risk of colorectal cancer by subtype.

  • Noralane M Lindor‎ et al.
  • Genes, chromosomes & cancer‎
  • 2017‎

MicroRNAs (miRNAs) regulate up to one-third of all protein-coding genes including genes relevant to cancer. Variants within miRNAs have been reported to be associated with prognosis, survival, response to chemotherapy across cancer types, in vitro parameters of cell growth, and altered risks for development of cancer. Five miRNA variants have been reported to be associated with risk for development of colorectal cancer (CRC). In this study, we evaluated germline genetic variation in 1,123 miRNAs in 899 individuals with CRCs categorized by clinical subtypes and in 204 controls. The role of common miRNA variation in CRC was investigated using single variant and miRNA-level association tests. Twenty-nine miRNAs and 30 variants exhibited some marginal association with CRC in at least one subtype of CRC. Previously reported associations were not confirmed (n = 4) or could not be evaluated (n = 1). The variants noted for the CRCs with deficient mismatch repair showed little overlap with the variants noted for CRCs with proficient mismatch repair, consistent with our evolving understanding of the distinct biology underlying these two groups. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.


KLF10 Mediated Epigenetic Dysregulation of Epithelial CD40/CD154 Promotes Endometriosis.

  • Abigail A Delaney‎ et al.
  • Biology of reproduction‎
  • 2016‎

Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease.


Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation.

  • Kristina Scheibe‎ et al.
  • Gastroenterology‎
  • 2019‎

Intestinal fibrosis is a long-term complication in inflammatory bowel diseases (IBD) that frequently results in functional damage, bowel obstruction, and surgery. Interleukin (IL) 36 is a group of cytokines in the IL1 family with inflammatory effects. We studied the expression of IL36 and its receptor, interleukin 1 receptor like 2 (IL1RL2 or IL36R) in the development of intestinal fibrosis in human tissues and mice.


Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer.

  • Liang Li‎ et al.
  • Pharmacogenetics and genomics‎
  • 2016‎

Pancreatic cancer is a rapidly fatal disease with gemcitabine remaining the first-line therapy. We performed a genotype-phenotype association study to identify biomarkers for predicting gemcitabine treatment outcome.


A new semisynthetic cardenolide analog 3β-[2-(1-amantadine)- 1-on-ethylamine]-digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA expression profiles and enhances proapoptotic survivin-2B expression in renal cell carcinoma cell lines.

  • Elke Nolte‎ et al.
  • Oncotarget‎
  • 2017‎

Cardiac glycosides are well known in the treatment of cardiovascular diseases; however, their application as treatment option for cancer patients is under discussion. We showed that the cardiac glycoside digitoxin and its analog AMANTADIG can inhibit the growth of renal cell carcinoma (RCC) cell lines and increase G2/M cell cycle arrest. To identify the signaling pathways and molecular basis of this G2/M arrest, microRNAs were profiled using microRNA arrays. Cardiac glycoside treatment significantly deregulated two microRNAs, miR-2278 and miR-670-5p. Pathway enrichment analysis showed that all cardiac glycoside treatments affected the MAPK and the axon guidance pathway. Within these pathways, three genes, MAPK1, NRAS and RAC2, were identified as in silico targets of the deregulated miRNAs. MAPK1 and NRAS are known regulators of G2/M cell cycle arrest. AMANTADIG treatment enhanced the expression of phosphorylated MAPK1 in 786-O cells. Secondly, we studied the expression of survivin known to be affected by cardiac glycosides and to regulate the G2/M cell phase. AMANTADIG treatment upregulated the expression of the pro-apoptotic survivin-2B variant in Caki-1 and 786-O cells. Moreover, treatment with AMANTADIG resulted in significantly lower survivin protein expression compared to 786-O control cells. Summarizing, treatment with all cardiac glycosides induced G2/M cell cycle arrest and downregulated the miR-2278 and miR-670-5p in microarray analysis. All cardiac glycosides affected the MAPK-pathway and survivin expression, both associated with the G2/M phase. Because cells in the G2/M phase are radio- and chemotherapy sensitive, cardiac glycosides like AMANTADIG could potentially improve the efficacy of radio- and/or chemotherapy in RCCs.


Genome-wide association study of germline variants and breast cancer-specific mortality.

  • Maria Escala-Garcia‎ et al.
  • British journal of cancer‎
  • 2019‎

We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry.


Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature.

  • Nadine N Hauer‎ et al.
  • European journal of human genetics : EJHG‎
  • 2019‎

Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.


LMO1 Synergizes with MYCN to Promote Neuroblastoma Initiation and Metastasis.

  • Shizhen Zhu‎ et al.
  • Cancer cell‎
  • 2017‎

A genome-wide association study identified LMO1, which encodes an LIM-domain-only transcriptional cofactor, as a neuroblastoma susceptibility gene that functions as an oncogene in high-risk neuroblastoma. Here we show that dβh promoter-mediated expression of LMO1 in zebrafish synergizes with MYCN to increase the proliferation of hyperplastic sympathoadrenal precursor cells, leading to a reduced latency and increased penetrance of neuroblastomagenesis. The transgenic expression of LMO1 also promoted hematogenous dissemination and distant metastasis, which was linked to neuroblastoma cell invasion and migration, and elevated expression levels of genes affecting tumor cell-extracellular matrix interaction, including loxl3, itga2b, itga3, and itga5. Our results provide in vivo validation of LMO1 as an important oncogene that promotes neuroblastoma initiation, progression, and widespread metastatic dissemination.


Exome Pool-Seq in neurodevelopmental disorders.

  • Bernt Popp‎ et al.
  • European journal of human genetics : EJHG‎
  • 2017‎

High throughput sequencing has greatly advanced disease gene identification, especially in heterogeneous entities. Despite falling costs this is still an expensive and laborious technique, particularly when studying large cohorts. To address this problem we applied Exome Pool-Seq as an economic and fast screening technology in neurodevelopmental disorders (NDDs). Sequencing of 96 individuals can be performed in eight pools of 12 samples on less than one Illumina sequencer lane. In a pilot study with 96 cases we identified 27 variants, likely or possibly affecting function. Twenty five of these were identified in 923 established NDD genes (based on SysID database, status November 2016) (ACTB, AHDC1, ANKRD11, ATP6V1B2, ATRX, CASK, CHD8, GNAS, IFIH1, KCNQ2, KMT2A, KRAS, MAOA, MED12, MED13L, RIT1, SETD5, SIN3A, TCF4, TRAPPC11, TUBA1A, WAC, ZBTB18, ZMYND11), two in 543 (SysID) candidate genes (ZNF292, BPTF), and additionally a de novo loss-of-function variant in LRRC7, not previously implicated in NDDs. Most of them were confirmed to be de novo, but we also identified X-linked or autosomal-dominantly or autosomal-recessively inherited variants. With a detection rate of 28%, Exome Pool-Seq achieves comparable results to individual exome analyses but reduces costs by >85%. Compared with other large scale approaches using Molecular Inversion Probes (MIP) or gene panels, it allows flexible re-analysis of data. Exome Pool-Seq is thus well suited for large-scale, cost-efficient and flexible screening in characterized but heterogeneous entities like NDDs.


Hyperphosphorylated PTEN exerts oncogenic properties.

  • Janine H van Ree‎ et al.
  • Nature communications‎
  • 2023‎

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of β-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


ALS is imprinted in the chromatin accessibility of blood cells.

  • Julia K Kühlwein‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.


Ontogeny Related Changes in the Pediatric Liver Metabolome.

  • Christopher M Wilson‎ et al.
  • Frontiers in pediatrics‎
  • 2020‎

Background: A major challenge in implementing personalized medicine in pediatrics is identifying appropriate drug dosages for children. The majority of drug dosing studies have been based on adult populations, often with modification of the dosing for children based on size and weight. However, the growth and development experienced by children between birth and adulthood represents a dynamically changing biological system, with implications for effective drug dosing, efficacy as well as potential drug toxicity. The purpose of this study was to apply a metabolomics approach to gain preliminary insights into the ontogeny of liver function from newborn to adolescent. Methods: Metabolites were measured in 98 post-mortem pediatric liver samples in two experiments 3 batches of samples, allowing for both technical and biological validation. After extensive quality control, imputation and normalization, non-parametric tests were used to determine which metabolite levels differ between the four age groups (AG) ranging in age from newborn to adolescent (AG1-children <1 year; AG2-children with age between 1 and 6 years; AG3-children with age between 6 and 12 years; AG4-children with age between 12 and 18 years). To identify which metabolites had different concentration levels among the age groups, Kruskal-Wallis and Spearman correlation tests were conducted. Pathway analysis utilized the Gamma Method. Correction for multiple testing was completed using Bonferroni correction. Results: We found 41 metabolites (out of 884) that were biologically validated, and of those 25 were technically replicated, of which 24 were known metabolites. For the majority of these 24 metabolites, concentration levels were significantly lower in newborns than in the other age groups, many of which were long chain fatty acids or involved in pyrimidine or purine metabolism. Additionally, we found two KEGG pathways enriched for association with age: betaine metabolism and alpha linolenic acid and linoleic acid metabolism. Conclusions: Understanding the role that ontogeny of childhood liver plays may aid in determining better drug dosing algorithms for children.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: