Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 97 papers

SpliceAI-10k calculator for the prediction of pseudoexonization, intron retention, and exon deletion.

  • Daffodil M Canson‎ et al.
  • Bioinformatics (Oxford, England)‎
  • 2023‎

SpliceAI is a widely used splicing prediction tool and its most common application relies on the maximum delta score to assign variant impact on splicing. We developed the SpliceAI-10k calculator (SAI-10k-calc) to extend use of this tool to predict: the splicing aberration type including pseudoexonization, intron retention, partial exon deletion, and (multi)exon skipping using a 10 kb analysis window; the size of inserted or deleted sequence; the effect on reading frame; and the altered amino acid sequence. SAI-10k-calc has 95% sensitivity and 96% specificity for predicting variants that impact splicing, computed from a control dataset of 1212 single-nucleotide variants (SNVs) with curated splicing assay results. Notably, it has high performance (≥84% accuracy) for predicting pseudoexon and partial intron retention. The automated amino acid sequence prediction allows for efficient identification of variants that are expected to result in mRNA nonsense-mediated decay or translation of truncated proteins.


The clinical utility and costs of whole-genome sequencing to detect cancer susceptibility variants-a multi-site prospective cohort study.

  • Aimee L Davidson‎ et al.
  • Genome medicine‎
  • 2023‎

Many families and individuals do not meet criteria for a known hereditary cancer syndrome but display unusual clusters of cancers. These families may carry pathogenic variants in cancer predisposition genes and be at higher risk for developing cancer.


Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.

  • Chenjie Zeng‎ et al.
  • Breast cancer research : BCR‎
  • 2016‎

Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.


Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus.

  • Hisani N Horne‎ et al.
  • PloS one‎
  • 2016‎

The Cancer Genetic Markers of Susceptibility genome-wide association study (GWAS) originally identified a single nucleotide polymorphism (SNP) rs11249433 at 1p11.2 associated with breast cancer risk. To fine-map this locus, we genotyped 92 SNPs in a 900kb region (120,505,799-121,481,132) flanking rs11249433 in 45,276 breast cancer cases and 48,998 controls of European, Asian and African ancestry from 50 studies in the Breast Cancer Association Consortium. Genotyping was done using iCOGS, a custom-built array. Due to the complicated nature of the region on chr1p11.2: 120,300,000-120,505,798, that lies near the centromere and contains seven duplicated genomic segments, we restricted analyses to 429 SNPs excluding the duplicated regions (42 genotyped and 387 imputed). Per-allelic associations with breast cancer risk were estimated using logistic regression models adjusting for study and ancestry-specific principal components. The strongest association observed was with the original identified index SNP rs11249433 (minor allele frequency (MAF) 0.402; per-allele odds ratio (OR) = 1.10, 95% confidence interval (CI) 1.08-1.13, P = 1.49 x 10-21). The association for rs11249433 was limited to ER-positive breast cancers (test for heterogeneity P≤8.41 x 10-5). Additional analyses by other tumor characteristics showed stronger associations with moderately/well differentiated tumors and tumors of lobular histology. Although no significant eQTL associations were observed, in silico analyses showed that rs11249433 was located in a region that is likely a weak enhancer/promoter. Fine-mapping analysis of the 1p11.2 breast cancer susceptibility locus confirms this region to be limited to risk to cancers that are ER-positive.


Gene-environment interactions involving functional variants: Results from the Breast Cancer Association Consortium.

  • Myrto Barrdahl‎ et al.
  • International journal of cancer‎
  • 2017‎

Investigating the most likely causal variants identified by fine-mapping analyses may improve the power to detect gene-environment interactions. We assessed the interplay between 70 single nucleotide polymorphisms identified by genetic fine-scale mapping of susceptibility loci and 11 epidemiological breast cancer risk factors in relation to breast cancer. Analyses were conducted on up to 58,573 subjects (26,968 cases and 31,605 controls) from the Breast Cancer Association Consortium, in one of the largest studies of its kind. Analyses were carried out separately for estrogen receptor (ER) positive (ER+) and ER negative (ER-) disease. The Bayesian False Discovery Probability (BFDP) was computed to assess the noteworthiness of the results. Four potential gene-environment interactions were identified as noteworthy (BFDP < 0.80) when assuming a true prior interaction probability of 0.01. The strongest interaction result in relation to overall breast cancer risk was found between CFLAR-rs7558475 and current smoking (ORint  = 0.77, 95% CI: 0.67-0.88, pint  = 1.8 × 10-4 ). The interaction with the strongest statistical evidence was found between 5q14-rs7707921 and alcohol consumption (ORint =1.36, 95% CI: 1.16-1.59, pint  = 1.9 × 10-5 ) in relation to ER- disease risk. The remaining two gene-environment interactions were also identified in relation to ER- breast cancer risk and were found between 3p21-rs6796502 and age at menarche (ORint  = 1.26, 95% CI: 1.12-1.43, pint =1.8 × 10-4 ) and between 8q23-rs13267382 and age at first full-term pregnancy (ORint  = 0.89, 95% CI: 0.83-0.95, pint  = 5.2 × 10-4 ). While these results do not suggest any strong gene-environment interactions, our results may still be useful to inform experimental studies. These may in turn, shed light on the potential interactions observed.


Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer.

  • George J Burghel‎ et al.
  • PloS one‎
  • 2013‎

Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide. Chromosomal instability (CIN) is a major driving force of microsatellite stable (MSS) sporadic CRC. CIN tumours are characterised by a large number of somatic chromosomal copy number aberrations (SCNA) that frequently affect oncogenes and tumour suppressor genes. The main aim of this work was to identify novel candidate CRC driver genes affected by recurrent and focal SCNA. High resolution genome-wide comparative genome hybridisation (CGH) arrays were used to compare tumour and normal DNA for 53 sporadic CRC cases. Context corrected common aberration (COCA) analysis and custom algorithms identified 64 deletions and 32 gains of focal minimal common regions (FMCR) at high frequency (>10%). Comparison of these FMCR with published genomic profiles from CRC revealed common overlap (42.2% of deletions and 34.4% of copy gains). Pathway analysis showed that apoptosis and p53 signalling pathways were commonly affected by deleted FMCR, and MAPK and potassium channel pathways by gains of FMCR. Candidate tumour suppressor genes in deleted FMCR included RASSF3, IFNAR1, IFNAR2 and NFKBIA and candidate oncogenes in gained FMCR included PRDM16, TNS1, RPA3 and KCNMA1. In conclusion, this study confirms some previously identified aberrations in MSS CRC and provides in silico evidence for some novel candidate driver genes.


Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia.

  • Sonja I Berndt‎ et al.
  • Nature genetics‎
  • 2013‎

Genome-wide association studies (GWAS) have previously identified 13 loci associated with risk of chronic lymphocytic leukemia or small lymphocytic lymphoma (CLL). To identify additional CLL susceptibility loci, we conducted the largest meta-analysis for CLL thus far, including four GWAS with a total of 3,100 individuals with CLL (cases) and 7,667 controls. In the meta-analysis, we identified ten independent associated SNPs in nine new loci at 10q23.31 (ACTA2 or FAS (ACTA2/FAS), P=1.22×10(-14)), 18q21.33 (BCL2, P=7.76×10(-11)), 11p15.5 (C11orf21, P=2.15×10(-10)), 4q25 (LEF1, P=4.24×10(-10)), 2q33.1 (CASP10 or CASP8 (CASP10/CASP8), P=2.50×10(-9)), 9p21.3 (CDKN2B-AS1, P=1.27×10(-8)), 18q21.32 (PMAIP1, P=2.51×10(-8)), 15q15.1 (BMF, P=2.71×10(-10)) and 2p22.2 (QPCT, P=1.68×10(-8)), as well as an independent signal at an established locus (2q13, ACOXL, P=2.08×10(-18)). We also found evidence for two additional promising loci below genome-wide significance at 8q22.3 (ODF1, P=5.40×10(-8)) and 5p15.33 (TERT, P=1.92×10(-7)). Although further studies are required, the proximity of several of these loci to genes involved in apoptosis suggests a plausible underlying biological mechanism.


Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer.

  • Francisco J Candido Dos Reis‎ et al.
  • EBioMedicine‎
  • 2015‎

Citizen science, scientific research conducted by non-specialists, has the potential to facilitate biomedical research using available large-scale data, however validating the results is challenging. The Cell Slider is a citizen science project that intends to share images from tumors with the general public, enabling them to score tumor markers independently through an internet-based interface.


Long-Range Modulation of PAG1 Expression by 8q21 Allergy Risk Variants.

  • Cristina T Vicente‎ et al.
  • American journal of human genetics‎
  • 2015‎

The gene(s) whose expression is regulated by allergy risk variants is unknown for many loci identified through genome-wide association studies. Addressing this knowledge gap might point to new therapeutic targets for allergic disease. The aim of this study was to identify the target gene(s) and the functional variant(s) underlying the association between rs7009110 on chromosome 8q21 and allergies. Eight genes are located within 1 Mb of rs7009110. Multivariate association analysis of publicly available exon expression levels from lymphoblastoid cell lines (LCLs) identified a significant association between rs7009110 and the expression of a single gene, PAG1 (p = 0.0017), 732 kb away. Analysis of histone modifications and DNase I hypersensitive sites in LCLs identified four putative regulatory elements (PREs) in the region. Chromosome conformation capture confirmed that two PREs interacted with the PAG1 promoter, one in allele-specific fashion. To determine whether these PREs were functional, LCLs were transfected with PAG1 promoter-driven luciferase reporter constructs. PRE3 acted as a transcriptional enhancer for PAG1 exclusively when it carried the rs2370615:C allergy predisposing allele, a variant in complete linkage disequilibrium with rs7009110. As such, rs2370615, which overlaps RelA transcription factor (TF) binding in LCLs and was found to disrupt Foxo3a binding to PRE3, represents the putative functional variant in this locus. Our studies suggest that the risk-associated allele of rs2370615 predisposes to allergic disease by increasing PAG1 expression, which might promote B cell activation and have a pro-inflammatory effect. Inhibition of PAG1 expression or function might have therapeutic potential for allergic diseases.


Prediction of breast cancer risk based on profiling with common genetic variants.

  • Nasim Mavaddat‎ et al.
  • Journal of the National Cancer Institute‎
  • 2015‎

Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking.


Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation.

  • Maya Ghoussaini‎ et al.
  • Nature communications‎
  • 2014‎

GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.


Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2.

  • Nick Orr‎ et al.
  • Human molecular genetics‎
  • 2015‎

We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here, we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88-0.92]; P-value = 1.58 × 10(-25)). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08-1.17]; P-value = 7.89 × 10(-09)) and rs13294895 (OR = 1.09 [1.06-1.12]; P-value = 2.97 × 10(-11)). SNP rs10816625, but not rs13294895, was also associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06-1.18]; P-value = 2.77 × 10(-05)). Functional genomic annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.


Novel bayes factors that capture expert uncertainty in prior density specification in genetic association studies.

  • Amy V Spencer‎ et al.
  • Genetic epidemiology‎
  • 2015‎

Bayes factors (BFs) are becoming increasingly important tools in genetic association studies, partly because they provide a natural framework for including prior information. The Wakefield BF (WBF) approximation is easy to calculate and assumes a normal prior on the log odds ratio (logOR) with a mean of zero. However, the prior variance (W) must be specified. Because of the potentially high sensitivity of the WBF to the choice of W, we propose several new BF approximations with logOR ∼N(0,W), but allow W to take a probability distribution rather than a fixed value. We provide several prior distributions for W which lead to BFs that can be calculated easily in freely available software packages. These priors allow a wide range of densities for W and provide considerable flexibility. We examine some properties of the priors and BFs and show how to determine the most appropriate prior based on elicited quantiles of the prior odds ratio (OR). We show by simulation that our novel BFs have superior true-positive rates at low false-positive rates compared to those from both P-value and WBF analyses across a range of sample sizes and ORs. We give an example of utilizing our BFs to fine-map the CASP8 region using genotype data on approximately 46,000 breast cancer case and 43,000 healthy control samples from the Collaborative Oncological Gene-environment Study (COGS) Consortium, and compare the single-nucleotide polymorphism ranks to those obtained using WBFs and P-values from univariate logistic regression.


Shared heritability and functional enrichment across six solid cancers.

  • Xia Jiang‎ et al.
  • Nature communications‎
  • 2019‎

Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (rg = 0.57, p = 4.6 × 10-8), breast and ovarian cancer (rg = 0.24, p = 7 × 10-5), breast and lung cancer (rg = 0.18, p =1.5 × 10-6) and breast and colorectal cancer (rg = 0.15, p = 1.1 × 10-4). We also found that multiple cancers are genetically correlated with non-cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional enrichment analysis revealed a significant excess contribution of conserved and regulatory regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability suggests that solid tumors arising across tissues share in part a common germline genetic basis.


Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers.

  • Juliet D French‎ et al.
  • American journal of human genetics‎
  • 2013‎

Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.


CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers.

  • Nichola Johnson‎ et al.
  • British journal of cancer‎
  • 2021‎

Epidemiological studies provide strong evidence for a role of endogenous sex hormones in the aetiology of breast cancer. The aim of this analysis was to identify genetic variants that are associated with urinary sex-hormone levels and breast cancer risk.


Mendelian randomisation study of smoking exposure in relation to breast cancer risk.

  • Hanla A Park‎ et al.
  • British journal of cancer‎
  • 2021‎

Despite a modest association between tobacco smoking and breast cancer risk reported by recent epidemiological studies, it is still equivocal whether smoking is causally related to breast cancer risk.


Gene-gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer.

  • Albert Rosenberger‎ et al.
  • European journal of medical research‎
  • 2022‎

Aberrant Wnt signalling, regulating cell development and stemness, influences the development of many cancer types. The Aryl hydrocarbon receptor (AhR) mediates tumorigenesis of environmental pollutants. Complex interaction patterns of genes assigned to AhR/Wnt-signalling were recently associated with lung cancer susceptibility.


FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

  • Abhijit A Patil‎ et al.
  • Oncotarget‎
  • 2014‎

Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge, where survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome.


Liver expression quantitative trait loci: a foundation for pharmacogenomic research.

  • Dylan M Glubb‎ et al.
  • Frontiers in genetics‎
  • 2012‎

Expression quantitative trait loci (eQTL) analysis can provide insights into the genetic regulation of gene expression at a genomic level and this information is proving extremely useful in many different areas of research. As a consequence of the role of the liver in drug metabolism and disposition, the study of eQTLs in primary human liver tissue could provide a foundation for pharmacogenomics. Thus far, four genome-wide eQTL studies have been performed using human livers. Many liver eQTLs have been found to be reproducible and a proportion of these may be specific to the liver. Already these data have been used to interpret and inform clinic genome-wide association studies, providing potential mechanistic evidence for clinical associations and identifying genes which may impact clinical phenotypes. However, the utility of liver eQTL data has not yet been fully explored or realized in pharmacogenomics. As further liver eQTL research is undertaken, the genetic regulation of gene expression will become much better characterized and this knowledge will create a rational basis for the prospective pharmacogenomic study of many drugs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: