Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 85 papers

Antinflammatory, antioxidant, and behavioral effects induced by administration of growth hormone-releasing hormone analogs in mice.

  • Lucia Recinella‎ et al.
  • Scientific reports‎
  • 2020‎

Growth hormone-releasing hormone (GHRH) antagonist MIA-690 and GHRH agonist MR-409, previously synthesized and developed by us have demonstrated potent antitumor effects. However, little is known about the effects of these analogs on brain functions. We investigated the potential antinflammatory and antioxidant effects of GHRH antagonist MIA-690 and GHRH agonist MR-409, on isolated mouse prefrontal cortex specimens treated with lipopolysaccharide (LPS). Additionally, we studied their effects on emotional behavior after chronic in vivo treatment. Ex vivo, MIA-690 and MR-409 inhibited LPS-induced inflammatory and pro-oxidative markers. In vivo, both MIA-690 and MR-409 induced anxiolytic and antidepressant-like effects, increased norepinephrine and serotonin levels and decreased nuclear factor-kB, tumor necrosis factor-α and interleukin-6 gene expression in prefrontal cortex. Increased nuclear factor erythroid 2-related factor 2 expression was also found in mice treated with MIA-690 and MR-409. MIA-690 showed higher efficacy in inhibiting all tested inflammatory and oxidative markers. In addition, MR-409 induced a down regulation of the gene and protein expression of pituitary-type GHRH-receptor in prefrontal cortex of mice after 4 weeks of treatment at 5 µg/day. In conclusion, our results demonstrate anxiolytic and antidepressant-like effects of GHRH analogs that could involve modulatory effects on monoaminergic signaling, inflammatory and oxidative status.


Phenolic Characterization and Neuroprotective Properties of Grape Pomace Extracts.

  • Annalisa Chiavaroli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Vitis vinifera (grape) contains various compounds with acknowledged phytochemical and pharmacological properties. Among the different parts of the plant, pomace is of particular interest as a winemaking industry by-product. A characterization of the water extract from grape pomace from Montepulciano d'Abruzzo variety (Villamagna doc) was conducted, and the bioactive phenolic compounds were quantified through HPLC-DAD-MS analysis. HypoE22, a hypothalamic cell line, was challenged with an oxidative stimulus and exposed to different concentrations (1 µg/mL-1 mg/mL) of the pomace extract for 24, 48, and 72 h. In the same conditions, cells were exposed to the sole catechin, in a concentration range (5-500 ng/mL) consistent with the catechin level in the extract. Cell proliferation was investigated by MTT assay, dopamine release through HPLC-EC method, PGE2 amount by an ELISA kit, and expressions of neurotrophin brain-derived neurotrophic factor (BDNF) and of cyclooxygenase-2 (COX-2) by RT-PCR. The extract reverted the cytotoxicity exerted by the oxidative stimulus at all the experimental times in a dose-dependent manner, whereas the catechin was able to revert the oxidative stress-induced depletion of dopamine 48 h and 72 h after the stimulus. The extract and the catechin were also effective in preventing the downregulation of BDNF and the concomitant upregulation of COX-2 gene expression. In accordance, PGE2 release was augmented by the oxidative stress conditions and reverted by the administration of the water extract from grace pomace and catechin, which were equally effective. These results suggest that the neuroprotection induced by the extract could be ascribed, albeit partially, to its catechin content.


Agonist of growth hormone-releasing hormone improves the disease features of spinal muscular atrophy mice.

  • Marina Boido‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Spinal muscular atrophy (SMA) is a severe autosomal recessive neuromuscular disease affecting children and young adults, caused by mutations of the survival motor neuron 1 gene (SMN1). SMA is characterized by the degeneration of spinal alpha motor neurons (αMNs), associated with muscle paralysis and atrophy, as well as other peripheral alterations. Both growth hormone-releasing hormone (GHRH) and its potent agonistic analog, MR-409, exert protective effects on muscle atrophy, cardiomyopathies, ischemic stroke, and inflammation. In this study, we aimed to assess the protective role of MR-409 in SMNΔ7 mice, a widely used model of SMA. Daily subcutaneous treatment with MR-409 (1 or 2 mg/kg), from postnatal day 2 (P2) to euthanization (P12), increased body weight and improved motor behavior in SMA mice, particularly at the highest dose tested. In addition, MR-409 reduced atrophy and ameliorated trophism in quadriceps and gastrocnemius muscles, as determined by an increase in fiber size, as well as upregulation of myogenic genes and inhibition of proteolytic pathways. MR-409 also promoted the maturation of neuromuscular junctions, by reducing multi-innervated endplates and increasing those mono-innervated. Finally, treatment with MR-409 delayed αMN death and blunted neuroinflammation in the spinal cord of SMA mice. In conclusion, the present study demonstrates that MR-409 has protective effects in SMNΔ7 mice, suggesting that GHRH agonists are promising agents for the treatment of SMA, possibly in combination with SMN-dependent strategies.


Adding New Scientific Evidences on the Pharmaceutical Properties of Pelargonium quercetorum Agnew Extracts by Using In Vitro and In Silico Approaches.

  • Annalisa Chiavaroli‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.


Growth hormone-releasing hormone agonist attenuates vascular calcification in diabetic db/db mice.

  • Hao-Lin Ren‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2023‎

Vascular calcification (VC) is an independent risk factor for cardiovascular diseases. VC increases mortality of all-causes. VC is one of most common cardiovascular complications in type II diabetes. So far, no therapy has been proven to be effective in treatment of clinical VC. The present study investigated the therapeutic effects of MR409, an agonistic analog of growth hormone-releasing hormone (GHRH-A), on VC in diabetic db/db mice.


Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model.

  • Chongxu Zhang‎ et al.
  • Scientific reports‎
  • 2020‎

Lung inflammation due to sarcoidosis is characterized by a complex cascade of immunopathologic events, including leukocyte recruitment and granuloma formation. α-melanocyte stimulating hormone (α-MSH) is a melanocortin signaling peptide with anti-inflammatory properties. We aimed to evaluate the effects of α-MSH in a novel in vitro sarcoidosis model. An in vitro sarcoidosis-like granuloma model was developed by challenging peripheral blood mononuclear cells (PBMCs) derived from patients with confirmed treatment-naïve sarcoidosis with microparticles generated from Mycobacterium abscessus cell walls. Unchallenged PBMCsand developed granulomas were treated daily with 10 μM α-MSH or saline as control. Cytokine concentrations in supernatants of culture and in cell extracts were measured using Illumina multiplex Elisa and western blot, respectively. Gene expression was analyzed using RNA-Seq and RT-PCR. Protein secretion and gene expression of IL-7, IL-7R, IFN-γ, MC1R, NF-κB, phosphorylated NF-κB (p-NF-κB), MARCO, and p-CREB were measured with western blot and RNAseq. A significant increase in IL-7, IL-7R, and IFN-γ protein expression was found in developed granulomas comparing to microparticle unchallenged PBMCs. IL-7, IL-7R, and IFN-γ protein expression was significantly reduced in developed granulomas after exposure to α-MSH compared with saline treated granulomas. Compared with microparticle unchallenged PBMCs, total NF-κB and p-NF-κB were significantly increased in developed granulomas, while expression of p-CREB was not changed. Treatment with α-MSH promoted a significantly higher concentration of p-CREB in granulomas. The anti-inflammatory effects of α-MSH were blocked by specific p-CREB inhibition. α-MSH has anti-inflammatory properties in this in vitro granuloma model, which is an effect mediated by induction of phosphorylation of CREB.


Growth hormone-releasing hormone receptor antagonist MIA-602 attenuates cardiopulmonary injury induced by BSL-2 rVSV-SARS-CoV-2 in hACE2 mice.

  • Jose M Condor Capcha‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Peptide YY (3 -36) inhibits dopamine and norepinephrine release in the hypothalamus.

  • Luigi Brunetti‎ et al.
  • European journal of pharmacology‎
  • 2005‎

Peptide YY (1-36) and peptide YY (3-36) are gut-derived hormones which are involved in feeding control in the hypothalamus. The hypothalamic mechanisms of feeding have been shown to be modulated by aminergic neurotransmitters, which could mediate the anorectic or orexigenic effects of neuropeptides and hormones. We have investigated the role of peptide YY (1-36) and peptide YY (3-36) on dopamine, norepinephrine, and serotonin release from hypothalamic synaptosomes in vitro. We found that peptide YY (3-36) inhibited depolarization-induced dopamine and norepinephrine release, leaving unaffected serotonin release, while peptide YY (1-36) did not modify either basal or stimulated amine release. We can hypothesize that the effects of peptide YY (3-36) could be mediated by inhibited hypothalamic dopamine and norepinephrine release, which could partially account for the anorectic activity of the peptide. On the other hand, peptide YY (1-36), which has a feeding stimulatory role, does not affect aminergic neurotransmission in the hypothalamus.


Expression of progenitor markers is associated with the functionality of a bioartificial adrenal cortex.

  • Mariya Balyura‎ et al.
  • PloS one‎
  • 2018‎

Encapsulation of primary bovine adrenocortical cells in alginate is an efficacious model of a bioartificial adrenal cortex. Such a bioartificial adrenal cortex can be used for the restoration of lost adrenal function in vivo as well as for in vitro modeling of the adrenal microenvironment and for investigation of cell-cell interactions in the adrenals. The aim of this work was the optimization of a bioartificial adrenal cortex, that is the generation of a highly productive, self-regenerating, long-term functioning and immune tolerant bioartificial organ. To achieve this, it is necessary that adrenocortical stem and progenitor cells are present in the bioartificial gland, as these undifferentiated cells play important roles in the function of the mature gland. Here, we verified the presence of adrenocortical progenitors in cultures of bovine adrenocortical cells, studied the dynamics of their appearance and growth and determined the optimal time point for cell encapsulation. These procedures increased the functional life span and reduced the immunogenicity of the bioartificial adrenal cortex. This model allows the use of the luteinizing hormone-releasing hormone (LHRH) agonist triptorelin, the neuropeptide bombesin, and retinoic acid to alter cell number and the release of cortisol over long periods of time.


Growth hormone releasing hormone induces the expression of nitric oxide synthase.

  • Nektarios Barabutis‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Growth hormone releasing hormone (GHRH) and its receptors are expressed in a wide variety of human tumours and established cancer cell lines and are involved in carcinogenesis. In addition, GHRH antagonists exert an antitumour activity in experimental cancer models. Recent studies indicate that the mechanisms involved in the mediation of the effects of GHRH include the regulation of the metabolism of the reactive oxygen species. This work demonstrates the expression of GHRH receptors and GHRH in the A549 human lung cancer cell line and shows that the mitogenic effect of GHRH in these cells is dependent on the activation of the extracellular receptor kinase (ERK)1/2 pathway. The action of GHRH can be suppressed by GHRH antagonist MZ-5-156 and mitogen activated protein kinase (MAPK) inhibitor PD 098059. These results are reflected in the effect in the proliferating cell nuclear antigen. In addition, our study shows that GHRH increases the expression of the inducible nitric oxide synthase, an enzyme which is strongly involved in various human diseases, including cancer and augments key intracellular regulators of its expression, such as pNF (nuclear factor)κBp50 and cyclooxygenase 2. GHRH antagonist MZ-5-156 counteracts the effects of GHRH in these studies, indicating that this class of peptide antagonists may be useful for the treatment of diseases related to increased oxidative and nitrosative stress.


Antagonists of growth hormone-releasing hormone (GHRH) inhibit the growth of human malignant pleural mesothelioma.

  • Tania Villanova‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 μg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.


Deeper Insights on Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg Extracts: Chemical Profiles, Biological Abilities, Network Analysis and Molecular Docking.

  • Kouadio Ibrahime Sinan‎ et al.
  • Biomolecules‎
  • 2021‎

Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg. is a well-known African medicinal plant traditionally used for various healing purposes. In the present study, methanolic, ethyl acetate and infusion extracts of A. cordifolia leaves were studied for their total phenolic and flavonoid contents and screened for their chemical composition. Moreover, the enzyme (acetyl- and butyryl-cholinesterases, α-amylase, α-glucosidase, and tyrosinase) inhibitory and cytotoxicity activities on HepG2: human hepatocellular carcinoma cells, B16 4A5: murine melanoma cells, and S17: murine bone marrow (normal) cells of extracts were evaluated. Finally, components-targets and docking analyzes were conducted with the aim to unravel the putative mechanisms underlying the observed bio-pharmacological effects. Interestingly, the infusion and methanolic extracts showed significantly higher total phenolic and flavonoid contents compared with the ethyl acetate extract (TPC: 120.38-213.12 mg GAE/g and TFC: 9.66-57.18 mg RE/g). Besides, the methanolic extracts followed by the infusion extracts were revealed to contain a higher number of compounds (84 and 74 compounds, respectively), while only 64 compounds were observed for the ethyl acetate extract. Gallic acid, ellagic acid, shikimic acid, rutin, quercetin, myricetin, vitexin, quercitrin, kaempferol, and naringenin were among the compounds that were commonly identified in all the studied extracts. Additionally, the methanolic and infusion extracts displayed higher antioxidant capacity than ethyl acetate extract in all assays performed. In ABTS and DPPH radical scavenging assays, the methanol extract (500.38 mg TE/g for DPPH and 900.64 mg TE/g for ABTS) exhibited the best ability, followed by the water and ethyl acetate extracts. Furthermore, the extracts exhibited differential enzyme inhibitory profiles. In particular, the methanolic and infusion extracts showed better cytotoxic selectivity activity against human hepatocellular carcinoma cells. Overall, this study demonstrated A cordifolia to be a species worthy of further investigations, given its richness in bioactive phytochemicals and wide potentialities for antioxidants and pharmacological agents.


Antagonist of Growth Hormone-Releasing Hormone Potentiates the Antitumor Effect of Pemetrexed and Cisplatin in Pleural Mesothelioma.

  • Iacopo Gesmundo‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Pleural mesothelioma (PM) is an aggressive cancer with poor prognosis and no effective therapies, mainly caused by exposure to asbestos. Antagonists of growth hormone-releasing hormone (GHRH) display strong antitumor effects in many experimental cancers, including lung cancer and mesothelioma. Here, we aimed to determine whether GHRH antagonist MIA-690 potentiates the antitumor effect of cisplatin and pemetrexed in PM. In vitro, MIA-690, in combination with cisplatin and pemetrexed, synergistically reduced cell viability, restrained cell proliferation and enhanced apoptosis, compared with drugs alone. In vivo, the same combination resulted in a strong growth inhibition of MSTO-211H xenografts, decreased tumor cell proliferation and increased apoptosis. Mechanistically, MIA-690, particularly with chemotherapeutic drugs, inhibited proliferative and oncogenic pathways, such as MAPK ERK1/2 and cMyc, and downregulated cyclin D1 and B1 mRNAs. Inflammatory pathways such as NF-kB and STAT3 were also reduced, as well as oxidative, angiogenic and tumorigenic markers (iNOS, COX-2, MMP2, MMP9 and HMGB1) and growth factors (VEGF and IGF-1). Overall, these findings strongly suggest that GHRH antagonists of MIA class, such as MIA-690, could increase the efficacy of standard therapy in PM.


Growth Hormone-Releasing Hormone Receptor Antagonist Modulates Lung Inflammation and Fibrosis due to Bleomycin.

  • Chongxu Zhang‎ et al.
  • Lung‎
  • 2019‎

Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that a GHRH receptor (GHRH-R) antagonist, MIA-602, would inhibit bleomycin-induced lung inflammation and/or fibrosis in C57Bl/6J mice.


Inhibitory Effects Induced by Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra Water Extracts on Oxidative Stress Biomarkers and Dopamine Turnover in HypoE22 Cells and Isolated Rat Striatum Challenged with 6-Hydroxydopamine.

  • Giustino Orlando‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2019‎

Parkinson's disease (PD) is the most common and progressive neurodegenerative and oxidative stress-related disorder, characterized by a dramatic loss of dopamine (DA) neurons in the nigrostriatal tissue. The first-line drug for PD treatment is represented by l-dopa, although clinical and preclinical studies pointed out the potential efficacy of medicinal plant- and food-derived antioxidants as brain protective agents. In this regard, the potential application of Vicia faba, Uncaria rhyncophylla, and Glycyrrhiza glabra extracts is of noteworthy interest, despite a lack of information in the scientific literature as regards their effect on striatal DA level.


Antioxidant and Neuroprotective Effects Induced by Cannabidiol and Cannabigerol in Rat CTX-TNA2 Astrocytes and Isolated Cortexes.

  • Viviana di Giacomo‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Cannabidiol (CBD) and cannabigerol (CBG) are Cannabis sativa terpenophenols. Although CBD's effectiveness against neurological diseases has already been demonstrated, nothing is known about CBG. Therefore, a comparison of the effects of these compounds was performed in two experimental models mimicking the oxidative stress and neurotoxicity occurring in neurological diseases. Rat astrocytes were exposed to hydrogen peroxide and cell viability, reactive oxygen species production and apoptosis occurrence were investigated. Cortexes were exposed to K+ 60 mM depolarizing stimulus and serotonin (5-HT) turnover, 3-hydroxykinurenine and kynurenic acid levels were measured. A proteomic analysis and bioinformatics and docking studies were performed. Both compounds exerted antioxidant effects in astrocytes and restored the cortex level of 5-HT depleted by neurotoxic stimuli, whereas sole CBD restored the basal levels of 3-hydroxykinurenine and kynurenic acid. CBG was less effective than CBD in restoring the levels of proteins involved in neurotransmitter exocytosis. Docking analyses predicted the inhibitory effects of these compounds towards the neurokinin B receptor. Conclusion: The results in the in vitro system suggest brain non-neuronal cells as a target in the treatment of oxidative conditions, whereas findings in the ex vivo system and docking analyses imply the potential roles of CBD and CBG as neuroprotective agents.


Protective Effects Induced by Two Polyphenolic Liquid Complexes from Olive (Olea europaea, mainly Cultivar Coratina) Pressing Juice in Rat Isolated Tissues Challenged with LPS.

  • Lucia Recinella‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

MOMAST(®) HY100 and MOMAST(®) HP30 are polyphenolic liquid complexes from olive pressing juice with a total polyphenolic content of 100 g/kg (at least 50% as hydroxytyrosol) and 36 g/kg (at least 30% as hydroxytyrosol), respectively. We investigated the potential protective role of MOMAST(®) HY100 and MOMAST(®) HP30 on isolated rat colon, liver, heart, and prefrontal cortex specimens treated with Escherichia coli lipopolysaccharide (LPS), a validated ex vivo model of inflammation, by measuring the production of prostaglandin (PG)E2, 8-iso-PGF2α, lactate dehydrogenase (LDH), as well as cyclooxygenase (COX)-2, tumor necrosis factor α (TNFα), and inducible nitric oxide synthase (iNOS) mRNA levels. MOMAST(®) HY100 decreased LPS-stimulated PGE2 and LDH levels in all tested tissues. Following treatment with MOMAST(®) HY100, we found a significant reduction in iNOS levels in prefrontal cortex and heart specimens, COX-2 and TNFα mRNA levels in heart specimens, and 8-iso-PGF2α levels in liver specimens. On the other hand, MOMAST(®) HP30 was found to blunt COX-2, TNFα, and iNOS mRNA levels, as well as 8-iso-PGF2α in cortex, liver, and colon specimens. MOMAST(®) HP30 was also found to decrease PGE2 levels in liver specimens, while it decreased iNOS mRNA, LDH, and 8-iso-PGF2α levels in heart specimens. Both MOMAST(®) HY100 and MOMAST(®) HP30 exhibited protective effects on multiple inflammatory and oxidative stress pathways.


Osteoblastic Differentiation on Graphene Oxide-Functionalized Titanium Surfaces: An In Vitro Study.

  • Roberta Di Carlo‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2020‎

Titanium implant surfaces are continuously modified to improve biocompatibility and to promote osteointegration. Graphene oxide (GO) has been successfully used to ameliorate biomaterial performances, in terms of implant integration with host tissue. The aim of this study is to evaluate the Dental Pulp Stem Cells (DPSCs) viability, cytotoxic response, and osteogenic differentiation capability in the presence of GO-coated titanium surfaces.


Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS.

  • Marcello Locatelli‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Prostatitis, a general term describing prostate inflammation, is a common disease that could be sustained by bacterial or non-bacterial infectious agents. The efficacy of herbal extracts with antioxidant and anti-inflammatory effects for blunting the burden of inflammation and oxidative stress, with possible improvements in clinical symptoms, is under investigation. Pollen extracts have been previously reported as promising agents in managing clinical symptoms related to prostatitis. The aim of the present work was to evaluate the protective effects of Graminex pollen (GraminexTM, Deshler, OH, USA), a commercially available product based on standardized pollen extracts, in rat prostate specimens, ex vivo. In this context, we studied the putative mechanism of action of pollen on multiple inflammatory pathways, including the reduction of prostaglandin E₂ (PGE₂), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and malondialdehyde (MDA), whose activities were significantly increased by inflammatory stimuli. We characterized by means of chromatographic and colorimetric studies the composition of Graminex pollen to better correlate the activity of pollen on immortalized prostate cells (PC3), and in rat prostate specimens challenged with Escherichia coli lipopolysaccharide (LPS). We found that Graminex pollen was able to reduce radical oxygen species (ROS) production by PC3 cells and MDA, NFκB mRNA, and PGE₂ levels, in rat prostate specimens. According to our experimental evidence, Graminex pollen appears to be a promising natural product for the management of the inflammatory components in the prostate.


Neuroprotective and Neuromodulatory Effects Induced by Cannabidiol and Cannabigerol in Rat Hypo-E22 cells and Isolated Hypothalamus.

  • Viviana di Giacomo‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Cannabidiol (CBD) and cannabigerol (CBG) are non-psychotropic terpenophenols isolated from Cannabis sativa, which, besides their anti-inflammatory/antioxidant effects, are able to inhibit, the first, and to stimulate, the second, the appetite although there are no studies elucidating their role in the hypothalamic appetite-regulating network. Consequently, the aim of the present research is to investigate the role of CBD and CBG in regulating hypothalamic neuromodulators. Comparative evaluations between oxidative stress and food intake-modulating mediators were also performed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: