Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 152 papers

Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability.

  • Yotam Drier‎ et al.
  • Genome research‎
  • 2013‎

Whole-genome sequencing using massively parallel sequencing technologies enables accurate detection of somatic rearrangements in cancer. Pinpointing large numbers of rearrangement breakpoints to base-pair resolution allows analysis of rearrangement microhomology and genomic location for every sample. Here we analyze 95 tumor genome sequences from breast, head and neck, colorectal, and prostate carcinomas, and from melanoma, multiple myeloma, and chronic lymphocytic leukemia. We discover three genomic factors that are significantly correlated with the distribution of rearrangements: replication time, transcription rate, and GC content. The correlation is complex, and different patterns are observed between tumor types, within tumor types, and even between different types of rearrangements. Mutations in the APC gene correlate with and, hence, potentially contribute to DNA breakage in late-replicating, low %GC, untranscribed regions of the genome. We show that somatic rearrangements display less microhomology than germline rearrangements, and that breakpoint loci are correlated with local hypermutability with a particular enrichment for transversions.


Pan-cancer patterns of somatic copy number alteration.

  • Travis I Zack‎ et al.
  • Nature genetics‎
  • 2013‎

Determining how somatic copy number alterations (SCNAs) promote cancer is an important goal. We characterized SCNA patterns in 4,934 cancers from The Cancer Genome Atlas Pan-Cancer data set. Whole-genome doubling, observed in 37% of cancers, was associated with higher rates of every other type of SCNA, TP53 mutations, CCNE1 amplifications and alterations of the PPP2R complex. SCNAs that were internal to chromosomes tended to be shorter than telomere-bounded SCNAs, suggesting different mechanisms underlying their generation. Significantly recurrent focal SCNAs were observed in 140 regions, including 102 without known oncogene or tumor suppressor gene targets and 50 with significantly mutated genes. Amplified regions without known oncogenes were enriched for genes involved in epigenetic regulation. When levels of genomic disruption were accounted for, 7% of region pairs were anticorrelated, and these regions tended to encompass genes whose proteins physically interact, suggesting related functions. These results provide insights into mechanisms of generation and functional consequences of cancer-related SCNAs.


Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing.

  • David G McFadden‎ et al.
  • Cell‎
  • 2014‎

Small cell lung carcinoma (SCLC) is a highly lethal, smoking-associated cancer with few known targetable genetic alterations. Using genome sequencing, we characterized the somatic evolution of a genetically engineered mouse model (GEMM) of SCLC initiated by loss of Trp53 and Rb1. We identified alterations in DNA copy number and complex genomic rearrangements and demonstrated a low somatic point mutation frequency in the absence of tobacco mutagens. Alterations targeting the tumor suppressor Pten occurred in the majority of murine SCLC studied, and engineered Pten deletion accelerated murine SCLC and abrogated loss of Chr19 in Trp53; Rb1; Pten compound mutant tumors. Finally, we found evidence for polyclonal and sequential metastatic spread of murine SCLC by comparative sequencing of families of related primary tumors and metastases. We propose a temporal model of SCLC tumorigenesis with implications for human SCLC therapeutics and the nature of cancer-genome evolution in GEMMs.


High-throughput Phenotyping of Lung Cancer Somatic Mutations.

  • Alice H Berger‎ et al.
  • Cancer cell‎
  • 2016‎

Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer.


Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth.

  • Frederik Holst‎ et al.
  • Scientific reports‎
  • 2016‎

The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications.


Identification of cancer-cytotoxic modulators of PDE3A by predictive chemogenomics.

  • Luc de Waal‎ et al.
  • Nature chemical biology‎
  • 2016‎

High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics. We found that sensitivity to 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP, across 766 cancer cell lines correlates with expression of the gene PDE3A, encoding phosphodiesterase 3A. Like DNMDP, a subset of known PDE3A inhibitors kill selected cancer cells, whereas others do not. Furthermore, PDE3A depletion leads to DNMDP resistance. We demonstrated that DNMDP binding to PDE3A promotes an interaction between PDE3A and Schlafen 12 (SLFN12), suggestive of a neomorphic activity. Coexpression of SLFN12 with PDE3A correlates with DNMDP sensitivity, whereas depletion of SLFN12 results in decreased DNMDP sensitivity. Our results implicate PDE3A modulators as candidate cancer therapeutic agents and demonstrate the power of predictive chemogenomics in small-molecule discovery.


Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6.

  • Eunyoung Park‎ et al.
  • Nature structural & molecular biology‎
  • 2015‎

Mig6 is a feedback inhibitor that directly binds, inhibits and drives internalization of ErbB-family receptors. Mig6 selectively targets activated receptors. Here we found that the epidermal growth factor receptor (EGFR) phosphorylates Mig6 on Y394 and that this phosphorylation is primed by prior phosphorylation of an adjacent residue, Y395, by Src. Crystal structures of human EGFR-Mig6 complexes reveal the structural basis for enhanced phosphorylation of primed Mig6 and show how Mig6 rearranges after phosphorylation by EGFR to effectively irreversibly inhibit the same receptor that catalyzed its phosphorylation. This dual phosphorylation site allows Mig6 to inactivate EGFR in a manner that requires activation of the target receptor and that can be modulated by Src. Loss of Mig6 is a driving event in human cancer; analysis of 1,057 gliomas reveals frequent focal deletions of ERRFI1, the gene that encodes Mig6, in EGFR-amplified glioblastomas.


Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations.

  • Trevor J Pugh‎ et al.
  • Nature‎
  • 2012‎

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, β-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic β-catenin signalling in medulloblastoma.


Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.

  • Austin M Dulak‎ et al.
  • Nature genetics‎
  • 2013‎

The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of ~15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation spectra from whole-exome sequencing of 149 EAC tumor-normal pairs, 15 of which have also been subjected to whole-genome sequencing. We identify a mutational signature defined by a high prevalence of A>C transversions at AA dinucleotides. Statistical analysis of exome data identified 26 significantly mutated genes. Of these genes, five (TP53, CDKN2A, SMAD4, ARID1A and PIK3CA) have previously been implicated in EAC. The new significantly mutated genes include chromatin-modifying factors and candidate contributors SPG20, TLR4, ELMO1 and DOCK2. Functional analyses of EAC-derived mutations in ELMO1 identifies increased cellular invasion. Therefore, we suggest the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis.


Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing.

  • Andrew Kirby‎ et al.
  • Nature genetics‎
  • 2013‎

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma.

  • Guangwu Guo‎ et al.
  • Cancer research‎
  • 2015‎

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm associated with asbestos exposure. Although previous studies based on candidate gene approaches have identified important common somatic mutations in MPM, these studies have focused on small sets of genes and have provided a limited view of the genetic alterations underlying this disease. Here, we performed whole-exome sequencing on DNA from 22 MPMs and matched blood samples, and identified 517 somatic mutations across 490 mutated genes. Integrative analysis of mutations and somatic copy-number alterations revealed frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1. Our study presents the first unbiased view of the genomic basis of MPM.


An effective docking strategy for virtual screening based on multi-objective optimization algorithm.

  • Honglin Li‎ et al.
  • BMC bioinformatics‎
  • 2009‎

Development of a fast and accurate scoring function in virtual screening remains a hot issue in current computer-aided drug research. Different scoring functions focus on diverse aspects of ligand binding, and no single scoring can satisfy the peculiarities of each target system. Therefore, the idea of a consensus score strategy was put forward. Integrating several scoring functions, consensus score re-assesses the docked conformations using a primary scoring function. However, it is not really robust and efficient from the perspective of optimization. Furthermore, to date, the majority of available methods are still based on single objective optimization design.


Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans.

  • Sanna Gudmundsson‎ et al.
  • Nature‎
  • 2021‎

No abstract available


Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses.

  • Jason Nomburg‎ et al.
  • PLoS pathogens‎
  • 2022‎

Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.


Use of NAD tagSeq II to identify growth phase-dependent alterations in E. coli RNA NAD+ capping.

  • Hailei Zhang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

Recent findings regarding nicotinamide adenine dinucleotide (NAD+)-capped RNAs (NAD-RNAs) indicate that prokaryotes and eukaryotes employ noncanonical RNA capping to regulate gene expression. Two methods for transcriptome-wide analysis of NAD-RNAs, NAD captureSeq and NAD tagSeq, are based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry to label NAD-RNAs. However, copper ions can fragment/degrade RNA, interfering with the analyses. Here we report development of NAD tagSeq II, which uses copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) for labeling NAD-RNAs, followed by identification of tagged RNA by single-molecule direct RNA sequencing. We used this method to compare NAD-RNA and total transcript profiles of Escherichia coli cells in the exponential and stationary phases. We identified hundreds of NAD-RNA species in E. coli and revealed genome-wide alterations of NAD-RNA profiles in the different growth phases. Although no or few NAD-RNAs were detected from some of the most highly expressed genes, the transcripts of some genes were found to be primarily NAD-RNAs. Our study suggests that NAD-RNAs play roles in linking nutrient cues with gene regulation in E. coli.


Discovery and Structure-Based Design of Potent Covalent PPARγ Inverse-Agonists BAY-4931 and BAY-0069.

  • Douglas L Orsi‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

The ligand-activated nuclear receptor peroxisome-proliferator-activated receptor-γ (PPARG or PPARγ) represents a potential target for a new generation of cancer therapeutics, especially in muscle-invasive luminal bladder cancer where PPARγ is a critical lineage driver. Here we disclose the discovery of a series of chloro-nitro-arene covalent inverse-agonists of PPARγ that exploit a benzoxazole core to improve interactions with corepressors NCOR1 and NCOR2. In vitro treatment of sensitive cell lines with these compounds results in the robust regulation of PPARγ target genes and antiproliferative effects. Despite their imperfect physicochemical properties, the compounds showed modest pharmacodynamic target regulation in vivo. Improvements to the in vitro potency and efficacy of BAY-4931 and BAY-0069 compared to those of previously described PPARγ inverse-agonists show that these compounds are novel tools for probing the in vitro biology of PPARγ inverse-agonism.


Kmt2a cooperates with menin to suppress tumorigenesis in mouse pancreatic islets.

  • Wenchu Lin‎ et al.
  • Cancer biology & therapy‎
  • 2016‎

The reported incidence of pancreatic neuroendocrine tumors (PanNETs) has increased, due in large part to improvements in detection and awareness. However, therapeutic options are limited and a critical need exists for understanding a more thorough characterization of the molecular pathology underlying this disease. The Men1 knockout mouse model recapitulates the early stage of human PanNET development and can serve as a foundation for the development of advanced mouse models that are necessary for preclinical testing. Menin, the product of the MEN1 gene, has been shown to physically interact with the KMT2A and KMT2B histone methyltransferases. Both the KMT2A and MEN1 genes are located on chromosome 11q, which frequently undergoes loss of heterozygosity (LOH) in PanNETs. We report herein that inactivation of Kmt2a in Men1-deficient mice accelerated pancreatic islet tumorigenesis and shortened the average life span. Increases in cell proliferation were observed in mouse pancreatic islet tumors upon inactivation of both Kmt2a and Men1. The Kmt2a/Men1 double knockout mouse model can be used as a mouse model to study advanced PanNETs.


DNA defects, epigenetics, and gene expression in cancer-adjacent breast: a study from The Cancer Genome Atlas.

  • Melissa A Troester‎ et al.
  • NPJ breast cancer‎
  • 2016‎

Recurrence rates after breast-conserving therapy may depend on genomic characteristics of cancer-adjacent, benign-appearing tissue. Studies have not evaluated recurrence in association with multiple genomic characteristics of cancer-adjacent breast tissue. To estimate the prevalence of DNA defects and RNA expression subtypes in cancer-adjacent, benign-appearing breast tissue at least 2 cm from the tumor margin, cancer-adjacent, pathologically well-characterized, benign-appearing breast tissue specimens from The Cancer Genome Atlas project were analyzed for DNA sequence, copy-number variation, DNA methylation, messenger RNA (mRNA) sequence, and mRNA/microRNA expression. Additional samples were also analyzed by at least one of these genomic data types and associations between genomic characteristics of normal tissue and overall survival were assessed. Approximately 40% of cancer-adjacent, benign-appearing tissues harbored genomic defects in DNA copy number, sequence, methylation, or in RNA sequence, although these defects did not significantly predict 10-year overall survival. Two mRNA/microRNA expression phenotypes were observed, including an active mRNA subtype that was identified in 40% of samples. Controlling for tumor characteristics and the presence of genomic defects, this active subtype was associated with significantly worse 10-year survival among estrogen receptor (ER)-positive cases. This multi-platform analysis of breast cancer-adjacent samples produced genomic findings consistent with current surgical margin guidelines, and provides evidence that extratumoral RNA expression patterns in cancer-adjacent tissue predict overall survival among patients with ER-positive disease.


The Integrated Genomic Landscape of Thymic Epithelial Tumors.

  • Milan Radovich‎ et al.
  • Cancer cell‎
  • 2018‎

Thymic epithelial tumors (TETs) are one of the rarest adult malignancies. Among TETs, thymoma is the most predominant, characterized by a unique association with autoimmune diseases, followed by thymic carcinoma, which is less common but more clinically aggressive. Using multi-platform omics analyses on 117 TETs, we define four subtypes of these tumors defined by genomic hallmarks and an association with survival and World Health Organization histological subtype. We further demonstrate a marked prevalence of a thymoma-specific mutated oncogene, GTF2I, and explore its biological effects on multi-platform analysis. We further observe enrichment of mutations in HRAS, NRAS, and TP53. Last, we identify a molecular link between thymoma and the autoimmune disease myasthenia gravis, characterized by tumoral overexpression of muscle autoantigens, and increased aneuploidy.


Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing.

  • Laura E MacConaill‎ et al.
  • BMC genomics‎
  • 2018‎

Sample index cross-talk can result in false positive calls when massively parallel sequencing (MPS) is used for sensitive applications such as low-frequency somatic variant discovery, ancient DNA investigations, microbial detection in human samples, or circulating cell-free tumor DNA (ctDNA) variant detection. Therefore, the limit-of-detection of an MPS assay is directly related to the degree of index cross-talk.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: