Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 117 papers

Pirfenidone alleviates cardiac fibrosis induced by pressure overload via inhibiting TGF-β1/Smad3 signalling pathway.

  • Na Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Cardiac fibrosis critically injured the cardiac structure and function of the hypertensive patients. However, the anti-fibrotic strategy is still far from satisfaction. This study aims to determine the effect and mechanism of Pirfenidone (PFD), an anti-lung fibrosis medicine, in the treatment of cardiac fibrosis and heart failure induced by pressure overload. Male C57BL/6 mice were subjected to thoracic aorta constriction (TAC) or sham surgery with the vehicle, PFD (300 mg/kg/day) or Captopril (CAP, 20 mg/kg/day). After 8 weeks of surgery, mice were tested by echocardiography, and then sacrificed followed by morphological and molecular biological analysis. Compared to the sham mice, TAC mice showed a remarkable cardiac hypertrophy, interstitial and perivascular fibrosis and resultant heart failure, which were reversed by PFD and CAP significantly. The enhanced cardiac expression of TGF-β1 and phosphorylation of Smad3 in TAC mice were both restrained by PFD. Cardiac fibroblasts isolated from adult C57BL/6 mice were treated by Angiotensin II, which led to significant increases in cellular proliferation and levels of α-SMA, vimentin, TGF-β1 and phosphorylated TGF-β receptor and Smad3. These changes were markedly inhibited by pre-treatment of PFD. Collectively, PFD attenuates myocardial fibrosis and dysfunction induced by pressure overload via inhibiting the activation of TGF-β1/Smad3 signalling pathway.


Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades.

  • Haiyan Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2023‎

Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.


CCAAT/enhancer-binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin-converting enzyme-2 expression in diabetes.

  • Yuanyuan Tie‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer-binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin-converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh-C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti-fibrosis, anti-apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down-regulated in diabetic mice and HG-induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up-regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up-regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.


Cross-talk between DNA methylation and active histone modifications regulates aberrant expression of ZAP70 in CLL.

  • Shilu Amin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

Zeta-associated protein of 70 kD (ZAP70) is a recognized adverse prognostic marker in chronic lymphocytic leukaemia (CLL) associated with enhanced B-cell receptor signalling, significantly more aggressive disease course and poor overall survival. Zeta-associated protein of 70 kD is ordinarily expressed in T cells where it has a crucial role in T-cell receptor signalling, whereas its aberrant expression in CLL leads to enhanced B-cell receptor signalling and significantly more aggressive disease course. Although much is known about the activation of ZAP70 following engagement of T-cell receptor, there are little data on the regulation of ZAP70 gene expression in normal T cells or CLL. To understand the molecular events underpinning epigenetic regulation of ZAP70 gene in CLL, we have defined ZAP70 promoter region and outlined the regions crucial in regulating the gene activity. Following a direct comparison of ZAP70+ and ZAP70- primary CLLs, we show ZAP70 promoter in expressing CLLs to be associated with a spectrum of active histone modifications, some of which are tightly linked to aberrant DNA methylation in CLL. Cross-talk between histone modifications and reduced DNA methylation culminates in transcriptional de-repression of ZAP70. Moreover, treatment with histone deacetylase (HDAC) and DNA methylation inhibitors results in recovery of ZAP70 expression, which provides a possible explanation for the failure of HDAC inhibitors in CLL treatment and might serve as a cautionary warning for their future use in treatment of this leukaemia.


Qiliqiangxin inhibits angiotensin II-induced transdifferentiation of rat cardiac fibroblasts through suppressing interleukin-6.

  • Jingmin Zhou‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Qiliqiangxin (QL), a traditional Chinese medicine, had long been used to treat chronic heart failure. Recent studies revealed that differentiation of cardiac fibroblasts (CFs) into myofibroblasts played an important role in cardiac remodelling and development of heart failure, however, little was known about the underlying mechanism and whether QL treatment being involved. This study aimed to investigate the effects of QL on angiotensin II (AngII)-induced CFs transdifferentiation. Study was performed on in vitro cultured CFs from Sprague-Dawley rats. CFs differentiation was induced by AngII, which was attenuated by QL through reducing transforming growth factor-β1 (TGF-β1 ) and α-smooth muscle actin (α-SMA). Our data showed that AngII-induced IL-6 mRNA as well as typeI and typeIII collagens were reduced by QL. IL-6 deficiency could suppress TGF-β1 and α-SMA, and both IL-6 siRNA and QL-mediated such effect was reversed by foresed expression of recombined IL-6. Increase in actin stress fibres reflected the process of CFs differentiation, we found stress fibres were enhanced after AngII stimulation, which was attenuated by pre-treating CFs with QL or IL-6 siRNA, and re-enhanced after rIL-6 treatment. Importantly, we showed that calcineurin-dependent NFAT3 nuclear translocation was essential to AngII-mediated IL-6 transcription, QL mimicked the effect of FK506, the calcineurin inhibitor, on suppression of IL-6 expression and stress fibres formation. Collectively, our data demonstrated the negative regulation of CFs differentiation by QL through an IL-6 transcriptional mechanism that depends on inhibition of calcineurin/NFAT3 signalling.


Co-culture of human fibroblasts, smooth muscle and endothelial cells promotes osteopontin induction in hypoxia.

  • Nirvana Sadaghianloo‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.


Ubiquitin-specific protease 2 regulates Ang Ⅱ-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro.

  • Qiong Xu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Cardiac fibrosis, featuring abnormally elevated extracellular matrix accumulation, decreases tissue compliance, impairs cardiac function and accelerates heart failure. Mounting evidence suggests that the ubiquitin proteasome pathway is involved in cardiac fibrosis. In the present study, ubiquitin-specific protease 2 (USP2) was identified as a novel therapeutic target in cardiac fibrosis. Indeed, USP2 expression was increased in angiotensin II-induced primary cardiac fibroblasts (CFs) from neonatal rats. In addition, USP2 inhibition suppressed CFs proliferation, collagen synthesis and cell cycle progression. Furthermore, USP2 interacted with β-catenin, thereby regulating its deubiquitination and stabilization in CFs. To sum up, these findings revealed that USP2 has a therapeutic potential for the treatment of cardiac fibrosis.


Liraglutide protects against glucolipotoxicity-induced RIN-m5F β-cell apoptosis through restoration of PDX1 expression.

  • Edy Kornelius‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Prolonged exposure to high levels of glucose and fatty acid (FFA) can induce tissue damage commonly referred to as glucolipotoxicity and is particularly harmful to pancreatic β-cells. Glucolipotoxicity-mediated β-cell failure is a critical causal factor in the late stages of diabetes, which suggests that mechanisms that prevent or reverse β-cell death may play a critical role in the treatment of the disease. Transcription factor PDX1 was recently reported to play a key role in maintaining β-cell function and survival, and glucolipotoxicity can activate mammalian sterile 20-like kinase 1 (Mst1), which, in turn, stimulates PDX1 degradation and causes dysfunction and apoptosis of β-cells. Interestingly, previous research has demonstrated that increased glucagon-like peptide-1 (GLP-1) signalling effectively protects β cells from glucolipotoxicity-induced apoptosis. Unfortunately, few studies have examined the related mechanism in detail, especially the role in Mst1 and PDX1 regulation. In the present study, we investigate the toxic effect of high glucose and FFA levels on rat pancreatic RINm5F β-cells and demonstrate that the GLP-1 analogue liraglutide restores the expression of PDX1 by inactivating Mst1, thus ameliorating β-cell impairments. In addition, liraglutide also upregulates mitophagy, which may help restore mitochondrial function and protect β-cells from oxidative stress damage. Our study suggests that liraglutide may serve as a potential agent for developing new therapies to reduce glucolipotoxicity.


Synergism between obesity and HFpEF on neutrophils phenotype and its regulation by adipose tissue-molecules and SGLT2i dapagliflozin.

  • Cristina Almengló‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

The adiposity invokes innate immune activity, coronary microvascular dysfunction and consequently heart failure preserved ejection fraction (HFpEF). Our aim was to study the neutrophils profile on obesity and cardiovascular disease and its regulation by adipose tissue-secretome and dapagliflozin. We have isolated neutrophils from patients undergoing open heart surgery (19 women and 51 men). Its migration activity was performed with culture-transwell, transcriptional studies of proteolytic enzymes, adhesion molecules or receptors were analysed by real-time PCR and proteomics (from 20 patients) analysis by TripleTOF mass spectrometer. Differentiated HL-60 (dHL-60) was used as a preclinical model on microfluidic for endothelial cells attaching assays and genes regulation with epicardial and subcutaneous fat secretomes from patients (3 women and 9 men) or dapagliflozin 1-10 μM treatments. The transcriptional and proteomics studies have determined higher levels of adhesion molecules in neutrophils from patients with obesity. The adhesion molecule CD11b levels were higher in those patients with the combined obesity and HFpEF factors (1.70 ± 0.06 a.u. without obesity, 1.72 ± 0.04 a.u. obesity or HFpEF without obesity and 1.79 ± 0.08 a.u. obesity and HFpEF; p < .01). While fat-secretome induces its upregulation, dapagliflozin can modulated it. Because CD11b upregulation is associated with higher neutrophils migration and adhesion into endothelial cells, dapagliflozin might modulate this mechanism on patients with obesity and HFpEF.


Tenascin-c renders a proangiogenic phenotype in macrophage via annexin II.

  • Zhiyang Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Tenascin-c is an extracellular matrix glycoprotein, the expression of which relates to the progression of atherosclerosis, myocardial infarction and heart failure. Annexin II acts as a cell surface receptor of tenascin-c. This study aimed to delineate the role of tenascin-c and annexin II in macrophages presented in atherosclerotic plaque. Animal models with atherosclerotic lesions were established using ApoE-KO mice fed with high-cholesterol diet. The expression of tenascin-c and annexin II in atherosclerotic lesions was determined by qRT-PCR, Western blot and immunohistochemistry analysis. Raw 264.7 macrophages and human primary macrophages were exposed to 5, 10 and 15 μg/ml tenascin-c for 12 hrs. Cell migration as well as the proangiogenic ability of macrophages was examined. Additionally, annexin II expression was delineated in raw 264.7 macrophages under normal condition (20% O2 ) for 12 hrs or hypoxic condition (1% O2 ) for 6-12 hrs. The expression of tenascin-c and annexin II was markedly augmented in lesion aorta. Tenascin-c positively regulated macrophage migration, which was dependent on the expression of annexin II in macrophages. VEGF release from macrophages and endothelial tube induction by macrophage were boosted by tenascin-c and attenuated by annexin II blocking. Furthermore, tenascin-c activated Akt/NF-κB and ERK signalling through annexin II. Lastly, hypoxia conditioning remarkably facilitates annexin II expression in macrophages through hypoxia-inducible factor (HIF)-1α but not HIF-2α. In conclusion, tenascin-c promoted macrophage migration and VEGF expression through annexin II, the expression of which was modulated by HIF-1α.


Heterogeneous expression of ACE2 and TMPRRS2 in mesenchymal stromal cells.

  • Melanie Generali‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

The outbreak of COVID-19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID-19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS-CoV-2 entry has been detected in all MSC samples. These results are of particular importance for future MSC-based cell therapies to treat severe cases after COVID-19 infection.


ZEB1 serves as an oncogene in acute myeloid leukaemia via regulating the PTEN/PI3K/AKT signalling pathway by combining with P53.

  • Lanlan Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Acute myeloid leukaemia is a complex, highly aggressive hematopoietic disorder. Currently, in spite of great advances in radiotherapy and chemotherapy, the prognosis for AML patients with initial treatment failure is still poor. Therefore, the need for novel and efficient therapies to improve AML treatment outcome has become desperately urgent. In this study, we identified the expression of ZEB1 (a transcription factor) and focused on its possible role and mechanisms in the progression of AML. According to the data provided by the Gene Expression Profiling Interactive Analysis (GEPIA), high expression of ZEB1 closely correlates with poor prognosis in AML patients. Additionally, the overexpression of ZEB1 was observed in both AML patients and cell lines. Further functional experiments showed that ZEB1 depletion can induce AML differentiation and inhibit AML proliferation in vitro and in vivo. Moreover, ZEB1 expression was negatively correlated with tumour suppressor P53 expression and ZEB1 can directly bind to P53. Our results also revealed that ZEB1 can regulate PTEN/PI3K/AKT signalling pathway. The inhibitory effect of ZEB1 silencing on PTEN/PI3K/AKT signalling pathway could be significantly reversed by P53 small interfering RNA treatment. Overall, the present data indicated that ZEB1 may be a promising therapeutic target for AML treatment or a potential biomarker for diagnosis and prognosis.


Nepetin inhibits osteoclastogenesis by inhibiting RANKL-induced activation of NF-κB and MAPK signalling pathway, and autophagy.

  • Binxiang Chu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Aseptic prosthetic loosening due to wear particle-induced inflammatory osteolysis is the main cause of failure for artificial joint replacement. The inflammatory response and the production of pro-osteoclastic factors lead to elevation of osteoclast formation and excessive activity results in extensive bone destruction around the bone-implant interface. Here we showed that Nepetin, a natural bioactive flavonoid with proven anti-inflammatory and anti-proliferative properties, potently inhibited RANKL-induced osteoclast differentiation, formation and bone resorption in vitro, and protected mice against the deleterious effects of titanium particle-induced calvarial osteolysis in vivo. Mechanistically, Nepetin attenuated RANKL-induced activation of NF-κB and MAPK signalling pathways and TRAF6-dependent ubiquitination of Beclin 1 which is necessary for the induction of autophagy. In brief, our study demonstrates the potential therapeutic application of Nepetin against osteoclast-mediated osteolytic diseases.


IGF2BP3 promotes cell metastasis and is associated with poor patient survival in nasopharyngeal carcinoma.

  • Yun Xu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Metastasis contributes to treatment failure in nasopharyngeal carcinoma (NPC) patients. Our study aimed at elucidating the role of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in NPC metastasis and the underlying mechanism involved. IGF2BP3 expression in NPC was determined by bioinformatics, quantitative polymerase chain reaction and immunohistochemistry analyses. The biological function of IGF2BP3 was investigated by using in vitro and in vivo studies. In this study, IGF2BP3 mRNA and protein levels were elevated in NPC tissues. In addition, IGF2BP3 exerted an oncogenic role by promoting epithelial-mesenchymal transition (EMT), thereby inducing NPC cell migration and invasion. Further studies revealed that IGF2BP3 regulated the expression of key regulators of EMT by activating AKT/mTOR signalling, thus stimulating NPC cell migration and invasion. Remarkably, targeting IGF2BP3 delayed NPC metastasis through attenuating p-AKT and vimentin expression and inducing E-cadherin expression in vivo. Moreover, IGF2BP3 protein levels positively correlated with distant metastasis after initial treatment. Importantly, IGF2BP3 expression served as an independent prognostic factor in predicting the overall survival and distant metastasis-free survival of NPC patients. This work identifies IGF2BP3 as a novel prognostic marker and a new target for NPC treatment.


Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

  • Li Jin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis.


Knockout of Akt1/2 suppresses the metastasis of human prostate cancer cells CWR22rv1 in vitro and in vivo.

  • Bing Su‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration-resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.


Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia.

  • Hongyu Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2014‎

Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the proliferation and migration of rat pulmonary arterial smooth muscle cells (SMCs) under hypoxia, and investigated the underlying mechanism and the relationship with autophagy. Our data showed that hypoxia activated autophagy significantly at 24 hrs. The addition of exogenous apelin decreased the level of autophagy and further inhibited pulmonary arterial SMC (PASMC) proliferation via activating downstream phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/the mammalian target of Rapamycin (mTOR) signal pathways. The inhibition of the apelin receptor (APJ) system by siRNA abolished the inhibitory effect of apelin in PASMCs under hypoxia. This study provides the evidence that exogenous apelin treatment contributes to inhibit the proliferation and migration of PASMCs by regulating the level of autophagy.


Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases.

  • Shuo Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Cardiac hypertrophy has become a major cardiovascular problem wordwide and is considered the early stage of heart failure. Treatment and prevention strategies are needed due to the suboptimal efficacy of current treatment methods. Recently, many studies have demonstrated the important role of histone acetylation in myocardium remodelling along with cardiac hypertrophy. A Chinese herbal extract containing anacardic acid (AA) is known to possess strong histone acetylation inhibitory effects. In previous studies, we demonstrated that AA could reverse alcohol-induced cardiac hypertrophy in an animal model at the foetal stage. Here, we investigated whether AA could attenuate cardiac hypertrophy through the modulation of histone acetylation and explored its potential mechanisms in the hearts of transverse aortic constriction (TAC) mice. This study showed that AA attenuated hyperacetylation of acetylated lysine 9 on histone H3 (H3K9ac) by inhibiting the expression of p300 and p300/CBP-associated factor (PCAF) in TAC mice. Moreover, AA normalized the transcriptional activity of the heart nuclear transcription factor MEF2A. The high expression of cardiac hypertrophy-linked genes (ANP, β-MHC) was reversed through AA treatment in the hearts of TAC mice. Additionally, we found that AA improved cardiac function and survival rate in TAC mice. The current results further highlight the mechanism by which histone acetylation is controlled by AA treatment, which may help prevent and treat hypertrophic cardiomyopathy.


Cytochrome P450 26A1 modulates uterine dendritic cells in mice early pregnancy.

  • Ai-Qin Gu‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Cytochrome P450 26A1 (CYP26A1) plays important roles in the mice peri-implantation period. Inhibiting its expression or function leads to pregnancy failure. However, little is known about the underlying mechanisms involved, especially the relationship between CYP26A1 and immune cells. In this study, using Cyp26a1-specific antisense morpholigos (Cyp26a1-MO) knockdown mice model and pCR3.1-Cyp26a1 vaccine mice model, we found that the number of uterine CD45+ CD11c+ MHCIIlo-hi F4/80- dendritic cells (DCs) was significantly decreased in the treated mice. The percentage of mature DCs (CD86hi ) was obviously lower and the percentage of immature DCs (CD86lo ) was remarkably higher in uterine DCs in the treatment group than that of the control group. Further experiments found that ID2, a transcription factor associated with DCs development, and CD86, a DC mature marker molecule, were both significantly reduced in mice uteri in the treated group. In vitro, ID2 and CD86 also decreased in bone marrow-derived DCs under Cyp26a1-MO treatment. These findings provide novel information that CYP26A1 might affect the embryo implantation via modulating the differentiation and maturation of uterine DCs.


4-O-methylhonokiol protects against diabetic cardiomyopathy in type 2 diabetic mice by activation of AMPK-mediated cardiac lipid metabolism improvement.

  • Zongyu Zheng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Diabetic cardiomyopathy (DCM) is characterized by increased left ventricular mass and wall thickness, decreased systolic function, reduced ejection fraction (EF) and ultimately heart failure. The 4-O-methylhonokiol (MH) has been isolated mainly from the bark of the root and stem of Magnolia species. In this study, we aimed to elucidate whether MH can effectively prevent DCM in type 2 diabetic (T2D) mice and, if so, whether the protective response of MH is associated with its activation of AMPK-mediated inhibition of lipid accumulation and inflammation. A total number of 40 mice were divided into four groups: Ctrl, Ctrl + MH, T2D, T2D + MH. Five mice from each group were sacrificed after 3-month MH treatment. The remaining animals in each group were kept for additional 3 months without further MH treatment. In T2D mice, the typical DCM symptoms were induced as expected, reflected by decreased ejection fraction and lipotoxic effects inducing lipid accumulation, oxidative stress, inflammatory reactions, and final fibrosis. However, these typical DCM changes were significantly prevented by the MH treatment immediately or 3 months after the 3-month MH treatment, suggesting MH-induced cardiac protection from T2D had a memory effect. Mechanistically, MH cardiac protection from DCM may be associated with its lipid metabolism improvement by the activation of AMPK/CPT1-mediated fatty acid oxidation. In addition, the MH treatment of DCM mice significantly improved their insulin resistance levels by activation of GSK-3β. These results indicate that the treatment of T2D with MH effectively prevents DCM probably via AMPK-dependent improvement of the lipid metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: