Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 258 papers

Effects of PDE3 Inhibitor Olprinone on the Respiratory Parameters, Inflammation, and Apoptosis in an Experimental Model of Acute Respiratory Distress Syndrome.

  • Petra Kosutova‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

This study aimed to investigate whether a selective phosphodiesterase-3 (PDE3) inhibitor olprinone can positively influence the inflammation, apoptosis, and respiratory parameters in animals with acute respiratory distress syndrome (ARDS) model induced by repetitive saline lung lavage. Adult rabbits were divided into 3 groups: ARDS without therapy (ARDS), ARDS treated with olprinone i.v. (1 mg/kg; ARDS/PDE3), and healthy ventilated controls (Control), and were oxygen-ventilated for the following 4 h. Dynamic lung-thorax compliance (Cdyn), mean airway pressure (MAP), arterial oxygen saturation (SaO2), alveolar-arterial gradient (AAG), ratio between partial pressure of oxygen in arterial blood to a fraction of inspired oxygen (PaO2/FiO2), oxygenation index (OI), and ventilation efficiency index (VEI) were evaluated every hour. Post mortem, inflammatory and oxidative markers (interleukin (IL)-6, IL-1β, a receptor for advanced glycation end products (RAGE), IL-10, total antioxidant capacity (TAC), 3-nitrotyrosine (3NT), and malondialdehyde (MDA) and apoptosis (apoptotic index and caspase-3) were assessed in the lung tissue. Treatment with olprinone reduced the release of inflammatory mediators and markers of oxidative damage decreased apoptosis of epithelial cells and improved respiratory parameters. The results indicate a future potential of PDE3 inhibitors also in the therapy of ARDS.


Risk factor analysis of postoperative acute respiratory distress syndrome after type A aortic dissection repair surgery.

  • I-Li Su‎ et al.
  • Medicine‎
  • 2019‎

To investigate the incidence, outcomes, and risk factors of postoperative acute respiratory distress syndrome (ARDS) in patients undergoing surgical repair for acute type A aortic dissection.This retrospective study involved 270 patients who underwent surgical repair for acute type A aortic dissection between January 2009 and December 2015. Data on clinical characteristics and outcomes were collected. Patients who immediately died after surgery and with preoperative myocardial dysfunction were excluded. The included patients were divided into the ARDS (ARDS patients who met the Berlin definition) and non-ARDS groups. Primary outcome was postoperative ARDS, according to the 2012 Berlin definition for ARDS and was reviewed by 2 qualified physicians with expertise in critical care and cardiac surgery. Outcomes of interest were the incidence and severity of risk factors for ARDS in this population, and perioperative outcomes and survival rates were compared with patients with or without ARDS.A total of 233 adult patients were enrolled into this study; of these, 37 patients (15.9%) had ARDS. Three, 20, and 14 patients had mild, moderate, and severe ARDS, respectively, according to the Berlin definition, with no significant difference in age, sex, and underlying disease. The ARDS group had lower mean oxygenation index (OI) than the non-ARDS group in the first 3 days post-surgery and demonstrated an improvement in lung function after the fourth day. Postoperative complication risks were higher in the ARDS group than in the non-ARDS group. However, no significant difference was observed in in-hospital mortality between the 2 groups (10.8% vs 5.6%, P = .268). Additionally, there was also no significant difference in the 3-year mortality rate between the 2 groups (P of log-rank test = .274). Postoperative hemoglobin level (odds ratio [OR]: 0.78; 95% confidence interval [CI]: 0.62-0.99) and perioperative blood transfusion volume (OR: 1.07; 95% CI: 1.03-1.12) were associated with ARDS risk.Postoperative ARDS after type A aortic dissection repair surgery was associated with risks of postoperative complications but not with risk of in-hospital mortality or 3-year mortality. A higher perioperative blood transfusion volume and a lower postoperative hemoglobin level may be risk factors for ARDS.


Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome.

  • Saurabh Aggarwal‎ et al.
  • Redox biology‎
  • 2020‎

We previously reported that the highly reactive cell-free heme (CFH) is increased in the plasma of patients with chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time that CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) are increased in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBC) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial Na+ channel (ENaC) and cation sodium (Na+) channels in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within its narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. A single intramuscular injection of the heme-scavenging protein, hemopexin (4 μg/kg body weight), one hour post halogen gas exposure, decreased plasma CFH and improved lung ENaC activity in mice. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.


Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome.

  • Kun-Chen Lin‎ et al.
  • Mediators of inflammation‎
  • 2018‎

This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. In vitro and ex vivo studies showed that SW enhances mitochondrial uptake into lung epithelial and parenchyma cells (all p < 0.001). Flow cytometry demonstrated that albumin levels and numbers of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+) in bronchoalveolar lavage fluid were the highest in untreated ARDS, were progressively reduced across SW, Mito, and SW + Mito (all p < 0.0001), and were the lowest in sham controls. The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.


Effects of early administration of a novel anticholinergic drug on acute respiratory distress syndrome induced by sepsis.

  • Hao Li‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2011‎

Acute respiratory distress syndrome (ARDS) is the inflammatory disorder of the lung most commonly caused by sepsis. It was hypothesized that treating the lung with penehyclidine hydrochloride (PHC), a new type of hyoscyamus drug, early in the development of sepsis could diminish the lung dysfunction.


Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis.

  • Oleg F Sharifov‎ et al.
  • PloS one‎
  • 2013‎

Acute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied. Peptides such as L-4F mimic the secondary structural features and functions of apolipoprotein (apo)A-I, the major protein component of HDL. We set out to measure changes in HDL in sepsis-mediated ARDS patients, and to study the potential of L-4F to prevent sepsis-mediated ARDS in a rodent model of lipopolysaccharide (LPS)-mediated acute lung injury, and a combination of primary human leukocytes and human ARDS serum. We also analyzed serum from non-lung disease intubated patients (controls) and sepsis-mediated ARDS patients. Compared to controls, ARDS demonstrates increased serum endotoxin and IL-6 levels, and decreased HDL, apoA-I and activity of anti-oxidant HDL-associated paraoxanase-1. L-4F inhibits the activation of isolated human leukocytes and neutrophils by ARDS serum and LPS in vitro. Further, L-4F decreased endotoxin activity and preserved anti-oxidant properties of HDL both in vitro and in vivo. In a rat model of severe endotoxemia, L-4F significantly decreased mortality and reduces lung and liver injury, even when administered 1 hour post LPS. Our study suggests the protective role of the apoA-I mimetic peptide L-4F in ARDS and gram-negative endotoxemia and warrant further clinical evaluation. The main protective mechanisms of L-4F are due to direct inhibition of endotoxin activity and preservation of HDL anti-oxidant activity.


Interleukin-33-Dependent Accumulation of Regulatory T Cells Mediates Pulmonary Epithelial Regeneration During Acute Respiratory Distress Syndrome.

  • Wen Tan‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Acute respiratory distress syndrome (ARDS) triggered mostly by infection, is a syndrome that involves respiratory failure. ARDS induces strong local infiltration of regulatory T cells (Treg cells) in the lungs, and Treg cells were recently highlighted as being related to the repair of various tissue. However, at present, there is still a lack of adequate evidence showing the impact of Treg cells on pulmonary regeneration during ARDS. Here, we verified that Treg cells are strongly induced in ARDS mice and Treg depletion results in impaired lung repair. Moreover, Treg cells show high expression of ST2, a cellular receptor for the tissue alarmin IL-33, which is strongly upregulated in the lung during ARDS. In addition, we demonstrated that IL-33 signaling is crucial for Treg cell accumulation, and ST2-blocked mice show a decrease in the Treg cell population. Critically, transfer of exogenous IL-33 into Treg depleted mice restored Treg cells and facilitated lung regeneration by promoting alveolar type II cell (AEC2) recovery in ARDS, with elevated neutrophils infiltration and upregulated TGF-β1 release. These results emphasized the importance of IL-33 in accelerating the expansion of pulmonary Treg cells and promoting their activity to mediate pulmonary epithelial regeneration during ARDS in a TGF-β1-dependent manner.


The Value of Oxygenation Saturation Index in Predicting the Outcomes of Patients with Acute Respiratory Distress Syndrome.

  • Wan-Ling Chen‎ et al.
  • Journal of clinical medicine‎
  • 2018‎

This study aims to investigate the association between oxygenation saturation index (OSI) and the outcome of acute respiratory distress syndrome (ARDS) patients, and assess the predictive performance of OSI for ARDS patients' mortality. This study was conducted at one regional hospital with 66 adult intensive care unit (ICU) beds. All patients with ARDS were identified between November 1 2016 and May 31 2018, and their clinical information was retrospectively collected. The lowest PaO₂/FiO₂ ratio and SpO₂/FiO₂ ratio and highest mean airway pressure (MAP) were recorded on the first day of ARDS; and oxygen index (OI) and OSI were calculated as (FiO₂ × MAP × 100)/PaO₂, and (FiO₂ × MAP × 100) /SpO₂ accordingly. During the study period, a total of 101 patients with ARDS were enrolled, and their mean age was 69.2 years. The overall in-ICU and in-hospital mortality rate was 57.4% and 61.4%, respectively. The patients with in-ICU mortality had higher APACHE II score than the survivors (31.6 ± 9.8 vs. 23.0 ± 9.1, p < 0.001). In addition, mortalities had lower SpO₂, and SpO₂/FiO₂ ratios than the survivors (both p < 0.05). In contrast, survivors had lower OI, and OSI than the mortalities (both p = 0.008). Both OSI (area under curve (AUC) = 0.656, p = 0.008) and OI (AUC = 0.654, p = 0.008) had good predictive performance of mortality among ARDS patients using receiver-operating characteristics (ROC) curves analysis. In addition, the AUC of SpO₂/FiO₂ (AUC = 0.616, p = 0.046) had better performance for mortality prediction than PaO₂/FiO₂ (AUC = 0.603, p = 0.08). The patients with OSI greater than 12 had a higher risk of mortality than OSI < 12 (adjusted OR, 5.22, 95% CI, 1.31⁻20.76, p = 0.019). In contrast, OI, PaO₂/FiO₂, and SpO₂/FiO₂ were not found to be significantly associated with increased mortality. OSI is significantly associated with the increased mortality of ARDS patients and can also be a good outcome predictor.


Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials.

  • Waleed Alhazzani‎ et al.
  • Critical care (London, England)‎
  • 2013‎

Randomized trials investigating neuromuscular blocking agents in adult acute respiratory distress syndrome (ARDS) have been inconclusive about effects on mortality, which is very high in this population. Uncertainty also exists about the associated risk of ICU-acquired weakness.


Prone positioning during venovenous extracorporeal membrane oxygenation for acute respiratory distress syndrome: a systematic review and meta-analysis.

  • Wynne Hsing Poon‎ et al.
  • Critical care (London, England)‎
  • 2021‎

Prone positioning (PP) improves oxygenation and respiratory mechanics and is associated with lower mortality in patients with moderate to severe acute respiratory distress syndrome (ARDS). Despite this, some patients develop refractory hypoxemia and hypercapnia requiring venovenous extracorporeal membrane oxygenation (VV ECMO) support and are usually cared for in supine position. The physiologic and outcome benefits of routine PP of patients during VV ECMO remains unclear. Hence, we conducted the systematic review and meta-analysis to evaluate the outcome benefits of PP for patients with ARDS being treated with VV ECMO.


Pre-treatment with morphine prevents lipopolysaccharide-induced acute respiratory distress syndrome in rats via activation of opioid receptors.

  • Yingfu Jiao‎ et al.
  • Experimental cell research‎
  • 2022‎

Acute respiratory distress syndrome (ARDS), a severe medical condition, is among the major causes of death in critically ill patients. Morphine is used as a therapeutic agent against severe pain. The mechanisms of its reactions over ARDS are not fully understood. The aim of this study was to assess the mechanism of morphine in rats with ARDS.


Radiologic Assessment of Lung Edema Score as a Predictor of Clinical Outcome in Children with Acute Respiratory Distress Syndrome.

  • Chang Hoon Han‎ et al.
  • Yonsei medical journal‎
  • 2023‎

The radiographic assessment of lung edema (RALE) score enables objective quantification of lung edema and is a valuable prognostic marker of adult acute respiratory distress syndrome (ARDS). We aimed to evaluate the validity of RALE score in children with ARDS.


Physiological, Biochemical, and Biophysical Characterization of the Lung-Lavaged Spontaneously-Breathing Rabbit as a Model for Respiratory Distress Syndrome.

  • Francesca Ricci‎ et al.
  • PloS one‎
  • 2017‎

Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in spontaneously-breathing premature infants with respiratory distress syndrome (RDS). Surfactant administration techniques compatible with nCPAP ventilation strategy are actively investigated. Our aim is to set up and validate a respiratory distress animal model that can be managed on nCPAP suitable for surfactant administration techniques studies. Surfactant depletion was induced by bronchoalveolar lavages (BALs) on 18 adult rabbits. Full depletion was assessed by surfactant component analysis on the BALs samples. Animals were randomized into two groups: Control group (nCPAP only) and InSurE group, consisting of a bolus of surfactant (Poractant alfa, 200 mg/kg) followed by nCPAP. Arterial blood gases were monitored until animal sacrifice, 3 hours post treatment. Lung mechanics were evaluated just before and after BALs, at the time of treatment, and at the end of the procedure. Surfactant phospholipids and protein analysis as well as surface tension measurements on sequential BALs confirmed the efficacy of the surfactant depletion procedure. The InSurE group showed a significant improvement of blood oxygenation and lung mechanics. On the contrary, no signs of recovery were appreciated in animals treated with just nCPAP. The surfactant-depleted adult rabbit RDS model proved to be a valuable and efficient preclinical tool for mimicking the clinical scenario of preterm infants affected by mild/moderate RDS who spontaneously breathe and do not require mechanical ventilation. This population is of particular interest as potential target for the non-invasive administration of surfactant.


Intrapulmonary and Intracardiac Shunts in Adult COVID-19 Versus Non-COVID Acute Respiratory Distress Syndrome ICU Patients Using Echocardiography and Contrast Bubble Studies (COVID-Shunt Study): A Prospective, Observational Cohort Study.

  • Vincent I Lau‎ et al.
  • Critical care medicine‎
  • 2023‎

Studies have suggested intrapulmonary shunts may contribute to hypoxemia in COVID-19 acute respiratory distress syndrome (ARDS) with worse associated outcomes. We evaluated the presence of right-to-left (R-L) shunts in COVID-19 and non-COVID ARDS patients using a comprehensive hypoxemia workup for shunt etiology and associations with mortality.


HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome.

  • Panpan Geng‎ et al.
  • Stem cells international‎
  • 2021‎

Paraquat (PQ) poisoning can cause acute lung injury and progress to pulmonary fibrosis and eventually death without effective therapy. Mesenchymal stem cells (MSCs) and hepatocyte growth factor (HGF) have been shown to partially reverse this damage. MSCs can be derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), dental pulp (DPSCs), and other sources. The biological characteristics of MSCs are specific to the tissue source. To develop an effective treatment for PQ poisoning, we compared the anti-inflammatory and antifibrotic effects of UC-MSCs and DPSCs and chose and modified a suitable source with HGF to investigate their therapeutic effects in vitro and in vivo. In this study, MSCs' supernatant was beneficial to the viability and proliferation of human lung epithelial cell BEAS-2B. Inflammatory and fibrosis-related cytokines were analyzed by real-time PCR. The results showed that MSCs' supernatant could suppress the expression of proinflammatory and profibrotic cytokines and increase the expression of anti-inflammatory and antifibrotic cytokines in BEAS-2B cells and human pulmonary fibroblast MRC-5. Extracellular vesicles (EVs) derived from MSCs performed more effectively than MSCs' supernatant. The effect of DPSCs was stronger than that of UC-MSCs and was further strengthened by HGF modification. PQ-poisoned mice were established, and UC-MSCs, DPSCs, and DPSCs-HGF were administered. Histopathological assessments revealed that DPSCs-HGF mitigated lung inflammation and collagen accumulation more effectively than the other treatments. DPSCs-HGF reduced lung permeability and increased the survival rate of PQ mice from 20% to 50%. Taken together, these results indicated that DPSCs can suppress inflammation and fibrosis in human lung cells better than UC-MSCs. The anti-inflammatory and antifibrotic effects were significantly enhanced by HGF modification. DPSCs-HGF ameliorated pulmonitis and pulmonary fibrosis in PQ mice, effectively improving the survival rate, which might be mediated by paracrine mechanisms. The results suggested that DPSCs-HGF transplantation was a potential therapeutic approach for PQ poisoning.


Therapeutic hypothermia attenuates physiologic, histologic, and metabolomic markers of injury in a porcine model of acute respiratory distress syndrome.

  • Sarah A Angus‎ et al.
  • Physiological reports‎
  • 2022‎

Acute respiratory distress syndrome (ARDS) is a lung injury characterized by noncardiogenic pulmonary edema and hypoxic respiratory failure. The purpose of this study was to investigate the effects of therapeutic hypothermia on short-term experimental ARDS. Twenty adult female Yorkshire pigs were divided into four groups (n = 5 each): normothermic control (C), normothermic injured (I), hypothermic control (HC), and hypothermic injured (HI). Acute respiratory distress syndrome was induced experimentally via intrapulmonary injection of oleic acid. Target core temperature was achieved in the HI group within 1 h of injury induction. Cardiorespiratory, histologic, cytokine, and metabolomic data were collected on all animals prior to and following injury/sham. All data were collected for approximately 12 h from the beginning of the study until euthanasia. Therapeutic hypothermia reduced injury in the HI compared to the I group (histological injury score = 0.51 ± 0.18 vs. 0.76 ± 0.06; p = 0.02) with no change in gas exchange. All groups expressed distinct phenotypes, with a reduction in pro-inflammatory metabolites, an increase in anti-inflammatory metabolites, and a reduction in inflammatory cytokines observed in the HI group compared to the I group. Changes to respiratory system mechanics in the injured groups were due to increases in lung elastance (E) and resistance (R) (ΔE from pre-injury = 46 ± 14 cmH2 O L-1 , p < 0.0001; ΔR from pre-injury: 3 ± 2 cmH2 O L-1  s- , p = 0.30) rather than changes to the chest wall (ΔE from pre-injury: 0.7 ± 1.6 cmH2 O L-1 , p = 0.99; ΔR from pre-injury: 0.6 ± 0.1 cmH2 O L-1  s- , p = 0.01). Both control groups had no change in respiratory mechanics. In conclusion, therapeutic hypothermia can reduce markers of injury and inflammation associated with experimentally induced short-term ARDS.


Predicting the Impact of Diffuse Alveolar Damage through Open Lung Biopsy in Acute Respiratory Distress Syndrome-The PREDATOR Study.

  • Pablo Cardinal-Fernandez‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

The aim of this retrospective and international study is to identify those clinical variables associated with diffuse alveolar damage (DAD), and to explore the impact of DAD on hospital mortality risk. Inclusion criteria were: adult patients with acute respiratory distress syndrome (ARDS) undergoing open lung biopsy (OLB) during their intensive care unit (ICU) management. The main end-points were: DAD and hospital mortality. In the training (n = 193) and validation cohorts (n = 65), the respiratory rate (odd ratio (OR) 0.956; confidence interval (CI) 95% 0.918; 0.995) and coronary ischemia (OR 5.974; CI95% 1.668; 21.399) on the day of ARDS had an average area under the receiver operating characteristic curve (AUROC) of 0.660 (CI95% 0.585; 0.736) and 0.562 (0.417; 0.706), respectively. PEEP (OR 1.131; CI95% 1.051; 1.218) and coronary ischemia (OR 6.820; CI95% 1.856; 25.061) on the day of OLB had an average AUROC of 0.696 (CI95% 0.621; 0.769) and 0.534 (CI95% 0.391; 0.678), respectively, to predict DAD. DAD (OR 2.296; CI95% 1.228; 4.294), diabetes mellitus requiring insulin (OR 0.081; CI95% 0.009; 0.710) and the respiratory rate (OR 1.045; CI95% 1.001; 1.091) on the day of ARDS had an average AUROC of 0.659 (CI95% 0.583; 0.737) and 0.513 (CI95% 0.361; 0.664) to predict hospital mortality and DAD (OR 2.081; CI95% 1.053; 4.114), diabetes mellitus requiring insulin (OR 0.093; CI95% 0.009; 0.956), PaCO2 (OR 1.051; CI95% 1.019; 1.084), and platelets count (OR 0.999; CI95% 0.999; 0.999) the day of OLB had an average AUROC of 0.778 (CI95% 0.710; 0.843) and 0.634 (CI95%0.481; 0.787) to predict hospital mortalty in the training and validation cohorts, respectively. In conclusion, DAD could not to be predicted clinically and was significantly associated with hospital mortality.


Safety and feasibility of lung biopsy in diagnosis of acute respiratory distress syndrome: protocol for a systematic review and meta-analysis.

  • Yosuke Fukuda‎ et al.
  • BMJ open‎
  • 2021‎

Acute respiratory distress syndrome (ARDS) is a type of acute respiratory failure characterised by non-cardiac pulmonary oedema caused by various underlying conditions. ARDS is often pathologically characterised by diffuse alveolar damage, and its pathological findings have been reported to be associated with prognosis, although the adverse effects of lung biopsies to obtain pathological findings are still unclear. The purpose of this systematic review and meta-analysis is to reveal the safety and feasibility of lung biopsy in the diagnosis of ARDS.


Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3.

  • Sheng Li‎ et al.
  • Cell death discovery‎
  • 2021‎

The cholinergic anti-inflammatory pathway (CAIP) is important for antagonizing inflammation and treating several diseases, including acute respiratory distress syndrome (ARDS), and is related to vagus nerve integrity. However, its underlying pathophysiological mechanism is still unclear. We hypothesized that CAIP regulates lung injury repair after ARDS through the STAT3 signaling pathway, which is an important downstream effector of α7nAchR. We enhanced CAIP activity by subjecting rats to vagus nerve stimulation (VNS), and administered the α-7 acetylcholine receptor (α7nAchR) agonist and antagonist to determine whether VNS can reduce lung injury by regulating the pulmonary inflammatory response through CAIP. After being subjected to VNS, the secretion of TNF-α and IL-1β was decreased, while the level of IL-10 was increased in the rat model of ARDS. Moreover, VNS treatment reduced lung mRNA levels of M1 macrophage markers, while increased those of M2 macrophage markers. The expression of Caspase-1 decreased, while that of STAT3 increased in lung tissue after VNS treatment. The aforementioned effects of VNS were reversed by cutting the cervical vagus efferent branch and blocking α7nAchR. These findings suggest that VNS inhibits the ARDS inflammatory response by promoting CAIP activity. Next, we used lentivirus knockdown of STAT3 expression to explore the mechanism of VNS through CAIP on lung inflammation in ARDS model rats. VNS activates α7nAchR, increases STAT3 expression, reduces Caspase-1 expression, suppresses inflammation by inhibiting inflammatory pyroptosis and M1 to M2 macrophage transformation, which may constitute the main mechanism of VNS action in ARDS.


Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome.

  • Sergi Vaquer‎ et al.
  • Annals of intensive care‎
  • 2017‎

Veno-venous extracorporeal membrane oxygenation (ECMO) for refractory acute respiratory distress syndrome (ARDS) is a rapidly expanding technique. We performed a systematic review and meta-analysis of the most recent literature to analyse complications and hospital mortality associated with this technique. Using the PRISMA guidelines for systematic reviews and meta-analysis, MEDLINE and EMBASE were systematically searched for studies reporting complications and hospital mortality of adult patients receiving veno-venous ECMO for severe and refractory ARDS. Studies were screened for low bias risk and assessed for study size effect. Meta-analytic pooled estimation of study variables was performed using a weighted random effects model for study size. Models with potential moderators were explored using random effects meta-regression. Twelve studies fulfilled inclusion criteria, representing a population of 1042 patients with refractory ARDS. Pooled mortality at hospital discharge was 37.7% (CI 95% = 31.8-44.1; I 2 = 74.2%). Adjusted mortality including one imputable missing study was 39.3% (CI 95% = 33.1-45.9). Meta-regression model combining patient age, year of study realization, mechanical ventilation (MV) days and prone positioning before veno-venous ECMO was associated with hospital mortality (p < 0.001; R 2 = 0.80). Patient age (b = 0.053; p = 0.01) and maximum cannula size during treatment (b = -0.075; p = 0.008) were also independently associated with mortality. Studies reporting H1N1 patients presented inferior hospital mortality (24.8 vs 40.6%; p = 0.027). Complication rate was 40.2% (CI 95% = 25.8-56.5), being bleeding the most frequent 29.3% (CI 95% = 20.8-39.6). Mortality due to complications was 6.9% (CI 95% = 4.1-11.2). Mechanical complications were present in 10.9% of cases (CI 95% = 4.7-23.5), being oxygenator failure the most prevalent (12.8%; CI 95% = 7.1-21.7). Despite initial severity, significant portion of patients treated with veno-venous ECMO survive hospital discharge. Patient age, H1N1-ARDS and cannula size are independently associated with hospital mortality. Combined effect of patient age, year of study realization, MV days and prone positioning before veno-venous ECMO influence patient outcome, and although medical complications are frequent, their impact on mortality is limited.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: