Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 93 papers

A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease.

  • Matthew Brecher‎ et al.
  • PLoS pathogens‎
  • 2017‎

The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618.


AG36 Inhibits Human Breast Cancer Cells Proliferation by Promotion of Apoptosis In vitro and In vivo.

  • Li-Hua Mu‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

AG36 is the biotransformation product of triterpenoid saponin from Ardisia gigantifolia stapf. In this study, the antitumor activity and underlying molecular mechanisms of AG36 against human breast MCF-7, MDA-MB-231, and SK-BR-3 cancer cells were investigated. AG36 inhibited the viability of MCF-7, MDA-MB-231, and SK-BR-3 cells in a dose and time-dependent manner, with an IC50 of approximately 0.73, 18.1, and 23.4 μM at 48 h, respectively. AG36 obviously induced apoptosis and G2/M arrest of all the three breast cancer cells. Moreover, AG36 decreased the protein expression of cycle regulatory proteins cyclin B1 or cyclin D1. In MCF-7 and MDA-MB-231 cells, AG36 strongly increased the cleaved caspase-3 and -8 protein expressions, while in SK-BR-3 cells, AG36 only increased the protein expression of cleaved caspase-3. In all the three breast cancer cells, the ratio of Bax/Bcl-2 and cytosolic cytochrome c content increased significantly compared with control group. The death receptor-related proteins Fas/FasL, TNFR1, and DR5 were detected by Western blot, it showed that different breast cancer cells activated the death receptor-mediated extrinsic caspase-8 pathway through different receptors. In addition, the caspase-8 inhibitor z-IETD-fmk could significantly block AG36-triggered MCF-7 cells apoptosis. The in vivo studies showed that AG36 significantly inhibited the growth of MCF-7 xenograft tumors in BALB/c nude mice comparing with control. In conclusion, AG36 inhibited MCF-7, MDA-MB-231, and SK-BR-3 cells proliferation by the intrinsic mitochondrial and the extrinsic death receptor pathways and AG36 might be a potential breast cancer therapeutic agent.


Liraglutide Protects Nucleus Pulposus Cells Against High-Glucose Induced Apoptosis by Activating PI3K/Akt/ mTOR/Caspase-3 and PI3K/Akt/GSK3β/Caspase-3 Signaling Pathways.

  • Mingyan Yao‎ et al.
  • Frontiers in medicine‎
  • 2021‎

Background and Objective: Diabetes mellitus (DM) is reportedly a significant risk factor for intervertebral disc degeneration (IDD). Incretin system and particularly glucagon-like peptide 1 (GLP-1) because of its glucose-lowering effects has become an important target in therapeutic strategies of type 2 diabetes (T2D). Liraglutide is a GLP-1 receptor (GLP-1R) agonist with glucoregulatory and insulinotropic functions as well as regulatory functions on cell proliferation, differentiation, and apoptosis. However, little is known on the roles and signaling pathways of apoptosis protecting effects of liraglutide in IDD. This study aimed to investigate the potential protective effects of liraglutide against high glucose-induced apoptosis of nucleus pulposus cells (NPCs) and the possible involved signaling pathways. Methods: The human NPCs were incubated with 100 nM liraglutide alone or in combination with LY294002 (PI3K inhibitor), rapamycin (mTOR inhibitor), and SB216763 (GSK3β inhibitor) in a high glucose culture for 48 h. The four groups were assessed further for apoptosis and genes expressions. The apoptotic effect was evaluated by flow cytometry and further confirmed by cell death detection enzyme-linked immunoassay plus (ELISAPLUS). The gene and protein expression levels were assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting techniques. The results were comparatively assessed between the four groups. Results: The results confirmed the presence of GLP-1R in the NPCs indicating that liraglutide inhibited the high glucose-induced apoptosis, which was blocked by silencing GLP-1R with siRNA. Moreover, liraglutide stimulated the phosphorylation of Akt, mTOR and GSK3β. Treatment with LY294002 significantly increased the apoptosis of NPCs and reduced the levels of their downstream substrates (p-AKT, p-mTOR, and p-GSK3β). Further assessments revealed that activation of mTOR and GSK3β was almost completely inhibited by rapamycin and SB216763, respectively, which significantly increased the caspase-3 levels. Conclusion: Liraglutide could protect NPCs against high glucose-induced apoptosis by activating the PI3K/AKT/mTOR/caspase-3 and PI3K/AKT/GSK3β/caspase-3 signaling pathways.


Apurinic endonuclease 1 promotes the cisplatin resistance of lung cancer cells by inducing Parkin‑mediated mitophagy.

  • Zheng Li‎ et al.
  • Oncology reports‎
  • 2019‎

Platinum‑containing doublet chemotherapy is the cornerstone of lung cancer treatment; however, cisplatin resistance is a major obstacle in the treatment of lung cancer. However, the mechanism underlying this resistance has not been fully elucidated. Previous studies have shown that serum apurinic/apyrimidinic endonuclease 1 (APE1) levels in patients with NSCLC are inversely associated with progression‑free survival after platinum‑containing doublet chemotherapy, and can serve as a biomarker for predicting disease prognosis and treatment efficacy. The present study was designed to investigate the role played by APE1 in the resistance of lung cancer to cisplatin. The levels of mitochondrial apurinic endonuclease 1 (m‑APE1) and total APE1 (t‑APE1) protein in a cisplatin‑resistant A549 cell line (A549/DDP) and cisplatin‑sensitive A549 cells were analyzed by western blotting. Mitochondrial membrane potential was detected by using the JC‑1 staining method. The cisplatin‑resistance of APE1‑overexpressing A549 cells and APE1‑silenced A549/DDP cells was assessed by cell apoptosis and colony formation assays. The results revealed that cisplatin‑resistant A549 cells contained high levels of APE1, and exhibited elevated levels of autophagy. The levels of m‑APE1 and t‑APE1 protein were increased in the A549/DDP cells when compared with these levels in the A549 cells. Overexpression of APE1 and Mia40 enhanced the cisplatin resistance and autophagy of the A549 cells. APE1 knockdown restored the cisplatin sensitivity and reduced the levels of LC3II and Parkin in the A549/DDP cells, but promoted the release of cytochrome c. Furthermore, Parkin silencing or treatment with 3‑methyladenine (3‑MA, an autophagy inhibitor) promoted the apoptosis of APE1‑overexpressing A549 cells, indicating that Parkin‑mediated mitophagy plays an important role in the APE1‑induced cisplatin resistance of A549 cells. In conclusion, APE1 promotes the cisplatin resistance of lung cancer cells by inducing Parkin‑mediated mitophagy.


Reduced vasorin enhances angiotensin II signaling within the aging arterial wall.

  • Gianfranco Pintus‎ et al.
  • Oncotarget‎
  • 2018‎

The glycosylated protein vasorin physically interacts with the transforming growth factor-beta1 (TGF-β1) and functionally attenuates its fibrogenic signaling in the vascular smooth muscle cells (VSMCs) of the arterial wall. Angiotensin II (Ang II) amplifies TGF-β1 activation in the VSMCs of the arterial wall with aging. In this study, we hypothesized that a reduced expression of the protein vasorin plays a contributory role in magnifying Ang II-associated fibrogenic signaling in the VSMCs of the arterial wall with aging. The current study shows that vasorin mRNA and protein expression were significantly decreased both in aortic wall and VSMCs from old (30 mo) vs. young (8 mo) FXBN rats. Exposing young VSMCs to Ang II reduced vasorin protein expression to the levels of old untreated cells while treating old VSMCs with the Ang II type AT1 receptor antagonist Losartan upregulated vasorin protein expression up to the levels of young. The physical interaction between vasorin and TGF-β1 was significantly decreased in old vs. young VSMCs. Further, exposing young VSMCs to Ang II increased the levels of matrix metalloproteinase type II (MMP-2) activation and TGF-β1 downstream molecules p-SMAD-2/3 and collagen type I production up to the levels of old untreated VSMCs, and these effects were substantially inhibited by overexpressing vasorin. Administration of Ang II to young rats (8 mo) for 28 days via an osmotic minipump markedly reduced the expression of vasorin. Importantly, vasorin protein was effectively cleaved by activated MMP-2 both in vitro and in vivo. Administration of the MMP inhibitor, PD 166793, for 6 mo to young adult (18 mo) via a daily gavage markedly increased levels of vasorin in the aortic wall. Thus, reduced vasorin amplifies Ang II profibrotic signaling via an activation of MMP-2 in VSMCs within the aging arterial wall.


Inhibition of Brd4 by JQ1 Promotes Functional Recovery From Spinal Cord Injury by Activating Autophagy.

  • Yao Li‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2020‎

Spinal cord injury (SCI) is a destructive neurological disorder that is characterized by impaired sensory and motor function. Inhibition of bromodomain protein 4 (Brd4) has been shown to promote the maintenance of cell homeostasis by activating autophagy. However, the role of Brd4 inhibition in SCI and the underlying mechanisms are poorly understood. Thus, the goal of the present study was to evaluate the effects of sustained Brd4 inhibition using the bromodomain and extraterminal domain (BET) inhibitor JQ1 on the regulation of apoptosis, oxidative stress and autophagy in a mouse model of SCI. First, we observed that Brd4 expression at the lesion sites of mouse spinal cords increased after SCI. Treatment with JQ1 significantly decreased the expression of Brd4 and improved functional recovery for up to 28 day after SCI. In addition, JQ1-mediated inhibition of Brd4 reduced oxidative stress and inhibited the expression of apoptotic proteins to promote neural survival. Our results also revealed that JQ1 treatment activated autophagy and restored autophagic flux, while the positive effects of JQ1 were abrogated by autophagy inhibitor 3-MA intervention, indicating that autophagy plays a crucial role in therapeutic effects Brd4 induced by inhibition of the functional recovery SCI. In the mechanistic analysis, we observed that modulation of the AMPK-mTOR-ULK1 pathway is involved in the activation of autophagy mediated by Brd4 inhibition. Taken together, the results of our investigation provides compelling evidence that Brd4 inhibition by JQ1 promotes functional recovery after SCI and that Brd4 may serve as a potential target for SCI treatment.


Mouse totipotent stem cells captured and maintained through spliceosomal repression.

  • Hui Shen‎ et al.
  • Cell‎
  • 2021‎

Since establishment of the first embryonic stem cells (ESCs), in vitro culture of totipotent cells functionally and molecularly comparable with in vivo blastomeres with embryonic and extraembryonic developmental potential has been a challenge. Here we report that spliceosomal repression in mouse ESCs drives a pluripotent-to-totipotent state transition. Using the splicing inhibitor pladienolide B, we achieve stable in vitro culture of totipotent ESCs comparable at molecular levels with 2- and 4-cell blastomeres, which we call totipotent blastomere-like cells (TBLCs). Mouse chimeric assays combined with single-cell RNA sequencing (scRNA-seq) demonstrate that TBLCs have a robust bidirectional developmental capability to generate multiple embryonic and extraembryonic cell lineages. Mechanically, spliceosomal repression causes widespread splicing inhibition of pluripotent genes, whereas totipotent genes, which contain few short introns, are efficiently spliced and transcriptionally activated. Our study provides a means for capturing and maintaining totipotent stem cells.


Sitagliptin improves functional recovery via GLP-1R-induced anti-apoptosis and facilitation of axonal regeneration after spinal cord injury.

  • Wen Han‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

Axon growth and neuronal apoptosis are considered to be crucial therapeutic targets against spinal cord injury (SCI). Growing evidences have reported stimulation of glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) signalling axis provides neuroprotection in experimental models of neurodegeneration disease. Endogenous GLP-1 is rapidly degraded by dipeptidyl peptidase-IV (DPP4), resulting in blocking of GLP-1/GLP1R signalling process. Sitagliptin, a highly selective inhibitor of DPP4, has approved to have beneficial effects on diseases in which neurons damaged. However, the roles and the underlying mechanisms of sitagliptin in SCI repairing remain unclear. In this study, we used a rat model of SCI and PC12 cells/primary cortical neurons to explore the mechanism of sitagliptin underlying SCI recovery. We discovered the expression of GLP-1R decreased in the SCI model. Administration of sitagliptin significantly increased GLP-1R protein level, alleviated neuronal apoptosis, enhanced axon regeneration and improved functional recovery following SCI. Nevertheless, treatment with exendin9-39, a GLP-1R inhibitor, remarkably reversed the protective effect of sitagliptin. Additionally, we detected the AMPK/PGC-1α signalling pathway was activated by sitagliptin stimulating GLP-1R. Taken together, sitagliptin may be a potential agent for axon regrowth and locomotor functional repair via GLP-1R-induced AMPK/ PGC-1α signalling pathway after SCI.


FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins.

  • Qingguo Chen‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Flowering is triggered by the transmission of a mobile protein, FLOWERING LOCUS T (FT), from leaves to the shoot apex. FT originates in the phloem of leaf veins. However, the identity of the FT-synthesizing cells in the phloem is not known. As a result, it has not been possible to determine whether the complex regulatory networks that control FT synthesis involve intercellular communication, as is the case in many aspects of plant development. We demonstrate here that FT in Arabidopsis thaliana and FT orthologs in Maryland Mammoth tobacco (Nicotiana tabacum) are produced in two unique files of phloem companion cells. These FT-activating cells, visualized by fluorescent proteins, also activate the GALACTINOL SYNTHASE (CmGAS1) promoter from melon (Cucumis melo). Ablating the cells by expression of the diphtheria toxin gene driven by the CmGAS1 promoter delays flowering in both Arabidopsis and Maryland Mammoth tobacco. In Arabidopsis, toxin expression reduces expression of FT and flowering-associated genes downstream, but not upstream, of FT Our results indicate that specific companion cells mediate the essential flowering function. Since the identified cells are present in the minor veins of two unrelated dicotyledonous species, this may be a widespread phenomenon.


Sublytic C5b-9 induces glomerular mesangial cell proliferation via ERK1/2-dependent SOX9 phosphorylation and acetylation by enhancing Cyclin D1 in rat Thy-1 nephritis.

  • Mengxiao Xie‎ et al.
  • Experimental & molecular medicine‎
  • 2021‎

Glomerular mesangial cell (GMC) proliferation is a histopathological alteration in human mesangioproliferative glomerulonephritis (MsPGN) or in animal models of MsPGN, e.g., the rat Thy-1 nephritis (Thy-1N) model. Although sublytic C5b-9 assembly on the GMC membrane can trigger cell proliferation, the mechanisms are still undefined. We found that sublytic C5b-9-induced rat GMC proliferation was driven by extracellular signal-regulated kinase 1/2 (ERK1/2), sry-related HMG-box 9 (SOX9), and Cyclin D1. Here, ERK1/2 phosphorylation was a result of the calcium influx-PKC-α-Raf-MEK1/2 axis activated by sublytic C5b-9, and Cyclin D1 gene transcription was enhanced by ERK1/2-dependent SOX9 binding to the Cyclin D1 promoter (-582 to -238 nt). In addition, ERK1/2 not only interacted with SOX9 in the cell nucleus to mediate its phosphorylation at serine residues 64 (a new site identified by mass spectrometry) and 181 (a known site), but also indirectly induced SOX9 acetylation by elevating the expression of general control non-repressed protein 5 (GCN5), which together resulted in Cyclin D1 synthesis and GMC proliferation. Moreover, our in vivo experiments confirmed that silencing these genes ameliorated the lesions of Thy-1N rats and reduced SOX9 phosphorylation, acetylation and Cyclin D1 expression. Furthermore, the renal tissue sections of MsPGN patients also showed higher phosphorylation or expression of ERK1/2, SOX9, and Cyclin D1. In summary, these findings suggest that sublytic C5b-9-induced GMC proliferation in rat Thy-1N requires SOX9 phosphorylation and acetylation via enhanced Cyclin D1 gene transcription, which may provide a new insight into human MsPGN pathogenesis.


miR-509-3-5P inhibits the invasion and lymphatic metastasis by targeting PODXL and serves as a novel prognostic indicator for gastric cancer.

  • Jing Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Our study aimed to investigate the clinicopathological feature and prognostic role of miR-509-3-5P in gastric cancer, to determine the invasive and metastatic role of miR-509-3-5P in vitro and in vivo and to explore the molecular mechanism between miR-509-3-5P and PODXL.


The lncRNA MALAT1 acts as a competing endogenous RNA to regulate KRAS expression by sponging miR-217 in pancreatic ductal adenocarcinoma.

  • Pingping Liu‎ et al.
  • Scientific reports‎
  • 2017‎

The long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) has been shown to play an important role in tumourigenesis. The aim of this study was to investigate the role of MALAT1 in pancreatic ductal adenocarcinoma. MALAT1 is expressed at higher levels in pancreatic ductal adenocarcinoma (PDAC) tissues than in nontumour tissues and in metastatic PDAC than in localized tumours. Patients with PDAC and high MALAT1 expression levels have shorter overall survival than patients with PDAC and low MALAT1 expression levels. Knocking down MALAT1 reduces pancreatic tumour cell growth and proliferation both in vitro and in vivo. Moreover, MALAT1 knockdown inhibits cell cycle progression and impairs tumour cell migration and invasion. We found that miR-217 can bind MALAT1 and regulate its expression in PDAC cell lines. We also found MALAT1 knockdown attenuates the protein expression of KRAS, a known target of miR-217. After MALAT1 knockdown, KRAS protein expression levels can be rescued through inhibition of miR-217 expression. More importantly, MALAT1 knockdown does not directly affect cellular miR-217 expression but decreases the miR-217 nucleus/cytoplasm ratio, suggesting that MALAT1 inhibits the translocation of miR-217 from the nucleus to the cytoplasm.


Sleep deprivation aggravates brain injury after experimental subarachnoid hemorrhage via TLR4-MyD88 pathway.

  • Ye-Ping Xu‎ et al.
  • Aging‎
  • 2021‎

Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease, and most of the SAH patients experience sleep deprivation during their hospital stay. It is well-known that sleep deprivation is one of the key components of developing several neurological disorders, but its effect on brain damage after SAH has not been determined. Therefore, this study was designed to evaluate the effect of sleep deprivation using an experimental SAH model in rats. Induction of sleep deprivation for 24 h aggravated the SAH-induced brain damage, as evidenced by brain edema, neuronal apoptosis and activation of caspase-3. Sleep deprivation also worsened the neurological impairment and cognitive deficits after SAH. The results of immunostaining and western blot showed that sleep deprivation increased the activation of microglial cells. In addition, sleep deprivation differently regulated the expression of anti-inflammatory and pro-inflammatory cytokines. The results of immunofluorescence staining and western blot showed that sleep deprivation markedly increased the activation of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88). Mechanically, treatment with the TLR4 inhibitor TAK-242 or the MyD88 inhibitor ST2825 significantly attenuated the brain damage and neuroinflammation induced by sleep deprivation after SAH. In conclusion, our results indicate that sleep deprivation aggravates brain damage and neurological dysfunction following experimental SAH in rats. These effects were mediated by the activation of the TLR4-MyD88 cascades and regulation of neuroinflammation.


An integrated transcriptomic and proteomic analysis reveals toxin arsenal of a novel Antarctic jellyfish Cyanea sp.

  • Hongyu Liang‎ et al.
  • Journal of proteomics‎
  • 2019‎

Jellyfish is a common toxic zooplankton in ocean. We successfully captured a kind of jellyfish 200 m underwater in Antarctica, and identified it as a jellyfish Cyanea sp. through morphological examination and MT-CO1 phylogenetic analysis. A total of 40,468 unigenes were harvested through transcriptome sequencing. We also successfully annotated 12,955 (32.01%) unigenes with the NR database, 10,882 (26.89%) unigenes with the SWISSPROT database, 4951 (12.23%) unigenes with the GO database, and 4901 (12.11%) unigenes with the KEGG database. In the proteomic analysis, a total of 11,159 peptides and 2630 proteins were harvested using the constructed transcriptome as the database. A number of 771 (29.31%) and 841 (31.98%) proteins were annotated against the GO and KEGG database, respectively. Moreover, a number of 29 toxic proteins matched from the 145 toxin-related unigenes were successfully screened, including 6 metalloproteinases, 4 phospholipases, 2 serine proteases, 1 serine protease inhibitor, 7 toxin-related venom and 9 other toxins. Our study is the first to identify a polar jellyfish Cyanea sp. with transcriptomics and proteomics, and these data can further serve as a public database for the identification of potential polar jellyfish-derived lead compounds feasibly functioning in the cold environment. SIGNIFICANCE: With increasing discussions on marine biodiversity and global warming, polar species have gradually become a focus for research. To the best of our knowledge, there is only one paper in pubMed about the mitochondrial genome of the Antarctic stalked jellyfish Haliclystus antarcticus Pfeffer. In this study, we captured a type of jellyfish (named BD-4) from the Southern Ocean (60°29'57" S, 52°11'44"W) on the scientific expedition ship "Xue Long" at the end of 2016. Although the samples were stored and transported by the ship at only -20 °C for more than two month, we successfully extracted the total RNA, and performed molecular species identification and combined analyses of de novo transcriptomics and proteomics. In addition to conventional bioinformatics techniques such as GO and KEGG annotation, we screened and listed toxic proteins, aligned the sequences, simulated three-dimensional structures and performed molecular phylogenetic analysis for typical components, including metalloproteinase and serine proteinase. Our study is the first to identify a polar jellyfish Cyanea sp. with de novo transcriptomics and proteomics, and these data can further serve as a public database for the identification of potential polar jellyfish-derived lead compounds.


DNA methylation of antisense noncoding RNA in the INK locus (ANRIL) is associated with coronary artery disease in a Chinese population.

  • Chen-Hui Zhao‎ et al.
  • Scientific reports‎
  • 2019‎

To explore the association between methylation of antisense non-coding RNA in the INK4 locus (ANRIL) and coronary artery disease (CAD) development. Methylation levels of ANRIL in 100 subjects with CAD and 100 controls were quantitatively analyzed using Sequenom MassARRAY. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to identify novel pathways. Our analyses indicated that 7 to 8 CpG sites within the 2nd CpG island located upstream of ANRIL, also known as cyclin-dependent kinase inhibitor 2B - antisense 1 (CDKN2B-AS1), are hyper-methylated in CAD subjects compared to controls (p = 0.034). The 40th CpG site within the 2nd CpG island located upstream of CDKN2B-AS1 was methylated to a lesser extent in CAD subjects compared to controls (p = 0.045). Both Pearson and Spearman analyses indicated that methylation levels were significantly associated with total cholesterol (r = 0.204, p = 0.004), fasting high-density lipoprotein cholesterol (r = 0.165, p = 0.020), and fasting low-density lipoprotein cholesterol (r = 0.265, p = 0.000). KEGG pathway analysis revealed a significant enrichment of genes associated with the tumor necrosis factor (TNF) signaling pathway. Among them, CCAAT/enhancer binding protein (C/EBPβ) was identified as a key transcription factor that promotes expression of CDKN2B-AS1 through promotor interaction. DNA methylation of the ANRIL promoter was significantly associated with CAD development in our study. Our analyses suggest that C/EBPβ is a key transcription factor that promotes CDKN2B-AS1 expression by directly interacting with the gene promotor mediated by TNF signaling.


Src-mediated phosphorylation converts FHL1 from tumor suppressor to tumor promoter.

  • Xiang Wang‎ et al.
  • The Journal of cell biology‎
  • 2018‎

FHL1 has been recognized for a long time as a tumor suppressor protein that associates with both the actin cytoskeleton and the transcriptional machinery. We present in this study a paradigm that phosphorylated FHL1 functions as an oncogenic protein by promoting tumor cell proliferation. The cytosolic tyrosine kinase Src interacts with and phosphorylates FHL1 at Y149 and Y272, which switches FHL1 from a tumor suppressor to a cell growth accelerator. Phosphorylated FHL1 translocates into the nucleus, where it binds to the transcription factor BCLAF1 and promotes tumor cell growth. Importantly, the phosphorylation of FHL1 is increased in tissues from lung adenocarcinoma patients despite the down-regulation of total FHL1 expression. Kindlin-2 was found to interact with FHL1 and recruit FHL1 to focal adhesions. Kindlin-2 competes with Src for binding to FHL1 and suppresses Src-mediated FHL1 phosphorylation. Collectively, we demonstrate that FHL1 can either suppress or promote tumor cell growth depending on the status of the sites for phosphorylation by Src.


The Maternal Diet with Fish Oil Might Decrease the Oxidative Stress and Inflammatory Response in Sows, but Increase the Susceptibility to Inflammatory Stimulation in their Offspring.

  • Wenli Luo‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

The aim of this study is to investigate the effect of the maternal diet with fish oil on the oxidative stress and inflammatory response in sows, and the protective effect on the piglets suckling the sows fed the diet with fish oil in the context of inflammatory stimulation. Twelve sows were divided into two groups. Sows were fed soybean oil diet (SD) or soybean oil + fish oil diet (FD) from gestation to lactation period. The blood samples of sows were collected from the auricular vein at the 16th day of lactation. One piglet was selected from each litter on the 14th day after birth. Lipopolysaccharide (LPS) was injected into the neck muscle after pre-treatment blood samples were collected from the anterior vena cava of piglets. The blood samples of piglets were collected at 5 h and 48 h post-LPS injection from the front cavity vein. Liver samples were collected at 48 h post-LPS injection. The FD diet significantly increased the level of high-density lipoprotein cholesterol (HDL-C) in the plasma of lactating sow, decreased the levels of alkaline phosphatase(AKP) and tumor necrosis factor alpha(TNF-α) in the plasma of lactating sows, and increased the level of immunoglobulin G(IgG) in the colostrum and interleukin-10(IL-10) in the milk (p < 0.05). In the FD group, the levels of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) significantly increased in the plasma of piglets at 48 h post-LPS injection (p < 0.05). Meanwhile, the relative expression of GSH-Px mRNA was decreased in the FD group (p < 0.05). However, the levels of interleukin-1 beta (IL-1β) and interleukin-6(IL-6) in the plasma of piglets were significantly higher in the FD group pre- and post-LPS injection (p < 0.05). The ratio of the phosphonated extracellular regulated protein kinases to the extracellular regulated protein kinases (p-ERK/ERK) protein in the livers of piglets was decreased (p < 0.05), but the expression of nuclear transcription factor-κB (NF-κB) mRNA and the ratio of the phosphonated inhibitor of NF-κB to the inhibitor of NF-κB (p-IκB-α/IκB-α) protein was increased in the livers of piglets (p < 0.05). These results indicate that a maternal diet with fish oil might decrease the oxidative stress and inflammatory response in sows, and enhance the antioxidative ability but increase the susceptibility to inflammatory stimulation in their progenies.


Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.

  • Susanne M Steggerda‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2017‎

Myeloid cells are an abundant leukocyte in many types of tumors and contribute to immune evasion. Expression of the enzyme arginase 1 (Arg1) is a defining feature of immunosuppressive myeloid cells and leads to depletion of L-arginine, a nutrient required for T cell and natural killer (NK) cell proliferation. Here we use CB-1158, a potent and orally-bioavailable small-molecule inhibitor of arginase, to investigate the role of Arg1 in regulating anti-tumor immunity.


Retinitis pigmentosa 2 pathogenic mutants degrade through BAG6/HUWE1 complex.

  • Jing Zhang‎ et al.
  • Experimental eye research‎
  • 2022‎

Retinitis pigmentosa (RP) is the most common inherited retinal degenerative disease which is the major cause of vision loss. X-linked RP patients account for 5%-15% of all inherited RP cases and mutations in RP2 (Retinitis pigmentosa 2) were responsible for about 20% X-linked RP families. A majority of RP2 pathogenic mutations displayed a vulnerable protein stability and degraded rapidly through ubiquitin-proteasome system (UPS). Though the RP2 protein could be readily recovered by proteasome inhibitors, e.g., MG132, their applications for RP2-related RP therapy were limited by their nonspecific characterization. In the present study, we aimed to identify UPS-related factors, such as E3 ligases, which are specifically involved in degradation of RP2 pathogenic mutants. We identified several E3 ligases, such as HUWE1, and the co-chaperon BAG6 specifically interacting with RP2 pathogenic mutants. Knockdown of HUWE1 and BAG6 could partially rescue the reduced protein levels of RP2 mutants. BAG6 is required for recruitment of HUWE1 to ubiquitinate RP2 mutants at the K268 site. The HUWE1 inhibitor BI8622 could restore the levels of RP2 mutant and then the binding to its partner ARL3 in retina cell lines. This study revealed the details of UPS-related degradation of RP2 mutants and possibly provided a potential treatment for RP2-related RP.


A high-content screen identifies the vulnerability of MYC-overexpressing cells to dimethylfasudil.

  • Jing Zhang‎ et al.
  • PloS one‎
  • 2021‎

A synthetic lethal effect arises when a cancer-associated change introduces a unique vulnerability to cancer cells that makes them unusually susceptible to a drug's inhibitory activity. The synthetic lethal approach is attractive because it enables targeting of cancers harboring specific genomic or epigenomic alterations, the products of which may have proven refractory to direct targeting. An example is cancer driven by overexpression of MYC. Here, we conducted a high-content screen for compounds that are synthetic lethal to elevated MYC using a small-molecule library to identify compounds that are closely related to, or are themselves, regulatory-approved drugs. The screen identified dimethylfasudil, a potent and reversible inhibitor of Rho-associated kinases, ROCK1 and ROCK2. Close analogs of dimethylfasudil are used clinically to treat neurologic and cardiovascular disorders. The synthetic lethal interaction was conserved in rodent and human cell lines and could be observed with activation of either MYC or its paralog MYCN. The synthetic lethality seems specific to MYC overexpressing cells as it could not be substituted by a variety of oncogenic manipulations and synthetic lethality was diminished by RNAi-mediated depletion of MYC in human cancer cell lines. Collectively, these data support investigation of the use of dimethylfasudil as a drug that is synthetic lethal for malignancies that specifically overexpress MYC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: