Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 914 papers

Exploitation of a very small peptide nucleic acid as a new inhibitor of miR-509-3p involved in the regulation of cystic fibrosis disease-gene expression.

  • Felice Amato‎ et al.
  • BioMed research international‎
  • 2014‎

Computational techniques, and in particular molecular dynamics (MD) simulations, have been successfully used as a complementary technique to predict and analyse the structural behaviour of nucleic acids, including peptide nucleic acid- (PNA-) RNA hybrids. This study shows that a 7-base long PNA complementary to the seed region of miR-509-3p, one of the miRNAs involved in the posttranscriptional regulation of the CFTR disease-gene of Cystic Fibrosis, and bearing suitable functionalization at its N- and C-ends aimed at improving its resistance to nucleases and cellular uptake, is able to revert the expression of the luciferase gene containing the 3'UTR of the gene in A549 human lung cancer cells, in agreement with the MD results that pointed at the formation of a stable RNA/PNA heteroduplex notwithstanding the short sequence of the latter. The here reported results widen the interest towards the use of small PNAs as effective anti-miRNA agents.


Solution Conformation of Bovine Leukemia Virus Gag Suggests an Elongated Structure.

  • Dominic F Qualley‎ et al.
  • Journal of molecular biology‎
  • 2019‎

Bovine leukemia virus (BLV) is a deltaretrovirus that infects domestic cattle. The structural protein Gag, found in all retroviruses, is a polyprotein comprising three major functional domains: matrix (MA), capsid (CA), and nucleocapsid (NC). Previous studies have shown that both mature BLV MA and NC are able to bind to nucleic acids; however, the viral assembly process and packaging of viral genomic RNA requires full-length Gag to produce infectious particles. Compared to lentiviruses, little is known about the structure of the Gag polyprotein of deltaretroviruses. In this work, structural models of full-length BLV Gag and Gag lacking the MA domain were generated based on previous structural data of individual domains, homology modeling, and flexible fitting to SAXS data using molecular dynamics. The models were used in molecular dynamic simulations to determine the relative mobility of the protein backbone. Functional annealing assays revealed the role of MA in the nucleic acid chaperone activity of BLV Gag. Our results show that full-length BLV Gag has an elongated rod-shaped structure that is relatively rigid, with the exception of the linker between the MA and CA domains. Deletion of the MA domain maintains the elongated structure but alters the rate of BLV Gag-facilitated annealing of two complementary nucleic acids. These data are consistent with a role for the MA domain of retroviral Gag proteins in modulating nucleic acid binding and chaperone activity. IMPORTANCE: BLV is a retrovirus that is found worldwide in domestic cattle. Since BLV infection has serious implications for agriculture, and given its similarities to human retroviruses such as HTLV-1, the development of an effective treatment would have numerous benefits. The Gag polyprotein exists in all retroviruses and is a key player in viral assembly. However, the full-length structure of Gag from any virus has yet to be elucidated at high resolution. This study provides structural data for BLV Gag and could be a starting point for modeling Gag-small molecule interactions with the ultimate goal of developing of a new class of pharmaceuticals.


pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation.

  • Piotr Batys‎ et al.
  • The journal of physical chemistry. B‎
  • 2020‎

Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.


LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures.

  • Y Vladimir Pabon-Martinez‎ et al.
  • Scientific reports‎
  • 2017‎

The anti-gene strategy is based on sequence-specific recognition of double-strand DNA by triplex forming (TFOs) or DNA strand invading oligonucleotides to modulate gene expression. To be efficient, the oligonucleotides (ONs) should target DNA selectively, with high affinity. Here we combined hybridization analysis and electrophoretic mobility shift assay with molecular dynamics (MD) simulations to better understand the underlying structural features of modified ONs in stabilizing duplex- and triplex structures. Particularly, we investigated the role played by the position and number of locked nucleic acid (LNA) substitutions in the ON when targeting a c-MYC or FXN (Frataxin) sequence. We found that LNA-containing single strand TFOs are conformationally pre-organized for major groove binding. Reduced content of LNA at consecutive positions at the 3'-end of a TFO destabilizes the triplex structure, whereas the presence of Twisted Intercalating Nucleic Acid (TINA) at the 3'-end of the TFO increases the rate and extent of triplex formation. A triplex-specific intercalating benzoquinoquinoxaline (BQQ) compound highly stabilizes LNA-containing triplex structures. Moreover, LNA-substitution in the duplex pyrimidine strand alters the double helix structure, affecting x-displacement, slide and twist favoring triplex formation through enhanced TFO major groove accommodation. Collectively, these findings should facilitate the design of potent anti-gene ONs.


SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling.

  • Siiri I Salomaa‎ et al.
  • Current biology : CB‎
  • 2021‎

Actin-rich cellular protrusions direct versatile biological processes from cancer cell invasion to dendritic spine development. The stability, morphology, and specific biological functions of these protrusions are regulated by crosstalk between three main signaling axes: integrins, actin regulators, and small guanosine triphosphatases (GTPases). SHANK3 is a multifunctional scaffold protein, interacting with several actin-binding proteins and a well-established autism risk gene. Recently, SHANK3 was demonstrated to sequester integrin-activating small GTPases Rap1 and R-Ras to inhibit integrin activity via its Shank/ProSAP N-terminal (SPN) domain. Here, we demonstrate that, in addition to scaffolding actin regulators and actin-binding proteins, SHANK3 interacts directly with actin through its SPN domain. Molecular simulations and targeted mutagenesis of the SPN-ankyrin repeat region (ARR) interface reveal that actin binding is inhibited by an intramolecular closed conformation of SHANK3, where the adjacent ARR domain covers the actin-binding interface of the SPN domain. Actin and Rap1 compete with each other for binding to SHANK3, and mutation of SHANK3, resulting in reduced actin binding, augments inhibition of Rap1-mediated integrin activity. This dynamic crosstalk has functional implications for cell morphology and integrin activity in cancer cells. In addition, SHANK3-actin interaction regulates dendritic spine morphology in neurons and autism-linked phenotypes in vivo.


A conformation-locking inhibitor of SLC15A4 with TASL proteostatic anti-inflammatory activity.

  • Andras Boeszoermenyi‎ et al.
  • Nature communications‎
  • 2023‎

Dysregulation of pathogen-recognition pathways of the innate immune system is associated with multiple autoimmune disorders. Due to the intricacies of the molecular network involved, the identification of pathway- and disease-specific therapeutics has been challenging. Using a phenotypic assay monitoring the degradation of the immune adapter TASL, we identify feeblin, a chemical entity which inhibits the nucleic acid-sensing TLR7/8 pathway activating IRF5 by disrupting the SLC15A4-TASL adapter module. A high-resolution cryo-EM structure of feeblin with SLC15A4 reveals that the inhibitor binds a lysosomal outward-open conformation incompatible with TASL binding on the cytoplasmic side, leading to degradation of TASL. This mechanism of action exploits a conformational switch and converts a target-binding event into proteostatic regulation of the effector protein TASL, interrupting the TLR7/8-IRF5 signaling pathway and preventing downstream proinflammatory responses. Considering that all components involved have been genetically associated with systemic lupus erythematosus and that feeblin blocks responses in disease-relevant human immune cells from patients, the study represents a proof-of-concept for the development of therapeutics against this disease.


Role of pKA in Charge Regulation and Conformation of Various Peptide Sequences.

  • Raju Lunkad‎ et al.
  • Polymers‎
  • 2021‎

Peptides containing amino acids with ionisable side chains represent a typical example of weak ampholytes, that is, molecules with multiple titratable acid and base groups, which generally exhibit charge regulating properties upon changes in pH. Charged groups on an ampholyte interact electrostatically with each other, and their interaction is coupled to conformation of the (macro)molecule, resulting in a complex feedback loop. Their charge-regulating properties are primarily determined by the pKA of individual ionisable side-chains, modulated by electrostatic interactions between the charged groups. The latter is determined by the amino acid sequence in the peptide chain. In our previous work we introduced a simple coarse-grained model of a flexible peptide. We validated it against experiments, demonstrating its ability to quantitatively predict charge on various peptides in a broad range of pH. In the current work, we investigated two types of peptide sequences: diblock and alternating, each of them consisting of an equal number of amino acids with acid and base side-chains. We showed that changing the sequence while keeping the same overall composition has a profound effect on the conformation, whereas it practically does not affect total charge on the peptide. Nevertheless, the sequence significantly affects the charge state of individual groups, showing that the zero net effect on the total charge is a consequence of unexpected cancellation of effects. Furthermore, we investigated how the difference between the pKA of acid and base side chains affects the charge and conformation of the peptide, showing that it is possible to tune the charge-regulating properties by following simple guiding principles based on the pKA and on the amino acid sequence. Our current results provide a theoretical basis for understanding of the complex coupling between the ionisation and conformation in flexible polyampholytes, including synthetic polymers, biomimetic materials and biological molecules, such as intrinsically disordered proteins, whose function can be regulated by changes in the pH.


TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.

  • Qiaozhen Ye‎ et al.
  • eLife‎
  • 2015‎

The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.


E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation.

  • James Chen‎ et al.
  • eLife‎
  • 2019‎

TraR and its homolog DksA are bacterial proteins that regulate transcription initiation by binding directly to RNA polymerase (RNAP) rather than to promoter DNA. Effects of TraR mimic the combined effects of DksA and its cofactor ppGpp, but the structural basis for regulation by these factors remains unclear. Here, we use cryo-electron microscopy to determine structures of Escherichia coli RNAP, with or without TraR, and of an RNAP-promoter complex. TraR binding induced RNAP conformational changes not seen in previous crystallographic analyses, and a quantitative analysis revealed TraR-induced changes in RNAP conformational heterogeneity. These changes involve mobile regions of RNAP affecting promoter DNA interactions, including the βlobe, the clamp, the bridge helix, and several lineage-specific insertions. Using mutational approaches, we show that these structural changes, as well as effects on σ70 region 1.1, are critical for transcription activation or inhibition, depending on the kinetic features of regulated promoters.


Inferring domain-domain interactions from protein-protein interactions in the complex network conformation.

  • Chen Chen‎ et al.
  • BMC systems biology‎
  • 2012‎

As protein domains are functional and structural units of proteins, a large proportion of protein-protein interactions (PPIs) are achieved by domain-domain interactions (DDIs), many computational efforts have been made to identify DDIs from experimental PPIs since high throughput technologies have produced a large number of PPIs for different species. These methods can be separated into two categories: deterministic and probabilistic. In deterministic methods, parsimony assumption has been utilized. Parsimony principle has been widely used in computational biology as the evolution of the nature is considered as a continuous optimization process. In the context of identifying DDIs, parsimony methods try to find a minimal set of DDIs that can explain the observed PPIs. This category of methods are promising since they can be formulated and solved easily. Besides, researches have shown that they can detect specific DDIs, which is often hard for many probabilistic methods. We notice that existing methods just view PPI networks as simply assembled by single interactions, but there is now ample evidence that PPI networks should be considered in a global (systematic) point of view for it exhibits general properties of complex networks, such as 'scale-free' and 'small-world'.


Restriction endonucleases that cleave RNA/DNA heteroduplexes bind dsDNA in A-like conformation.

  • Marlena Kisiala‎ et al.
  • Nucleic acids research‎
  • 2020‎

Restriction endonucleases naturally target DNA duplexes. Systematic screening has identified a small minority of these enzymes that can also cleave RNA/DNA heteroduplexes and that may therefore be useful as tools for RNA biochemistry. We have chosen AvaII (G↓GWCC, where W stands for A or T) as a representative of this group of restriction endonucleases for detailed characterization. Here, we report crystal structures of AvaII alone, in specific complex with partially cleaved dsDNA, and in scanning complex with an RNA/DNA hybrid. The specific complex reveals a novel form of semi-specific dsDNA readout by a hexa-coordinated metal cation, most likely Ca2+ or Mg2+. Substitutions of residues anchoring this non-catalytic metal ion severely impair DNA binding and cleavage. The dsDNA in the AvaII complex is in the A-like form. This creates space for 2'-OH groups to be accommodated without intra-nucleic acid steric conflicts. PD-(D/E)XK restriction endonucleases of known structure that bind their dsDNA targets in the A-like form cluster into structurally similar groups. Most such enzymes, including some not previously studied in this respect, cleave RNA/DNA heteroduplexes. We conclude that A-form dsDNA binding is a good predictor for RNA/DNA cleavage activity.


Conformation of the Solute-Binding Protein AdcAII Influences Zinc Uptake in Streptococcus pneumoniae.

  • Marina L Župan‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Streptococcus pneumoniae scavenges essential zinc ions from the host during colonization and infection. This is achieved by the ATP-binding cassette transporter, AdcCB, and two solute-binding proteins (SBPs), AdcA and AdcAII. It has been established that AdcAII serves a greater role during initial infection, but the molecular details of how the protein selectively acquires Zn(II) remain poorly understood. This can be attributed to the refractory nature of metal-free AdcAII to high-resolution structural determination techniques. Here, we overcome this issue by separately mutating the Zn(II)-coordinating residues and performing a combination of structural and biochemical analyses on the variant proteins. Structural analyses of Zn(II)-bound AdcAII variants revealed that specific regions within the protein underwent conformational changes via direct coupling to each of the metal-binding residues. Quantitative in vitro metal-binding assays combined with affinity determination and phenotypic growth assays revealed that each of the four Zn(II)-coordinating residues contributes to metal binding by AdcAII. Intriguingly, the phenotypic growth impact of the mutant adcAII alleles was, in general, independent of affinity, suggesting that the Zn(II)-bound conformation of the SBP is crucial for efficacious metal uptake. Collectively, these data highlight the intimate coupling of ligand affinity with protein conformational change in ligand-receptor proteins and provide a putative mechanism for AdcAII. These findings provide further mechanistic insight into the structural and functional diversity of SBPs that is broadly applicable to other prokaryotes.


Structural insight into the unique conformation of cystathionine β-synthase from Toxoplasma gondii.

  • Carmen Fernández-Rodríguez‎ et al.
  • Computational and structural biotechnology journal‎
  • 2021‎

Cysteine plays a major role in the redox homeostasis and antioxidative defense mechanisms of many parasites of the phylum Apicomplexa. Of relevance to human health is Toxoplasma gondii, the causative agent of toxoplasmosis. A major route of cysteine biosynthesis in this parasite is the reverse transsulfuration pathway involving two key enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL). CBS from T. gondii (TgCBS) catalyzes the pyridoxal-5́-phosphate-dependent condensation of homocysteine with either serine or O-acetylserine to produce cystathionine. The enzyme can perform alternative reactions that use homocysteine and cysteine as substrates leading to the endogenous biosynthesis of hydrogen sulfide, another key element in maintaining the intracellular redox equilibrium. In contrast with human CBS, TgCBS lacks the N-terminal heme binding domain and is not responsive to S-adenosylmethionine. Herein, we describe the structure of a TgCBS construct that lacks amino acid residues 466-491 and shows the same activity of the native protein. TgCBS Δ466-491 was determined alone and in complex with reaction intermediates. A complementary molecular dynamics analysis revealed a unique domain organization, similar to the pathogenic mutant D444N of human CBS. Our data provides one missing piece in the structural diversity of CBSs by revealing the so far unknown three-dimensional arrangement of the CBS-type of Apicomplexa. This domain distribution is also detected in yeast and bacteria like Pseudomonas aeruginosa. These results pave the way for understanding the mechanisms by which TgCBS regulates the intracellular redox of the parasite, and have far-reaching consequences for the functional understanding of CBSs with similar domain distribution.


Magnesium-dependent folding of a picornavirus IRES element modulates RNA conformation and eIF4G interaction.

  • Gloria Lozano‎ et al.
  • The FEBS journal‎
  • 2014‎

Internal ribosome entry site (IRES) elements are high-order RNA structures that promote internal initiation of translation to allow protein synthesis under situations that compromise the general cap-dependent translation mechanism. Picornavirus IRES elements are highly efficient elements with a modular RNA structure organization. Here we investigated the effect of Mg(2+) concentration on the local flexibility and solvent accessibility of the foot-and-mouth disease virus (FMDV) IRES element measured on the basis of selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) reactivity and hydroxyl radical cleavage. We have found that Mg(2+) concentration affects the organization of discrete IRES regions, mainly the apical region of domain 3, the 10 nt loop of domain 4, and the pyrimidine tract of domain 5. In support of the effect of RNA structure on IRES activity, substitution or deletion mutants of the 10 nt loop of domain 4 impair internal initiation. In addition, divalent cations affect the binding of eIF4G, a eukaryotic initiation factor that is essential for IRES-dependent translation that interacts with domain 4. Binding of eIF4G is favored by the local RNA flexibility adopted at low Mg(2+) concentration, while eIF4B interacts with the IRES independently of the compactness of the RNA structure. Our study shows that the IRES element adopts a near-native structure in the absence of proteins, shedding light on the influence of Mg(2+) ions on the local flexibility and binding of eIF4G in a model IRES element.


Teneurin4 dimer structures reveal a calcium-stabilized compact conformation supporting homomeric trans-interactions.

  • Dimphna H Meijer‎ et al.
  • The EMBO journal‎
  • 2022‎

Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell-cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis- and trans-synaptic protein complexes. Here, we present a 2.7 Å cryo-EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C-rich, YD-shell, and ABD domains. A 1.5 Å crystal structure of the C-rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS-based rigid-body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium-dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis-dimer is compatible with homomeric trans-interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis- and trans-synaptic interactions to construct functional neuronal circuits.


Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor.

  • Juncao Xu‎ et al.
  • eLife‎
  • 2019‎

σS is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of σS-mediated transcription requires a σS-specific activator, Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli σS-RNA polymerase (σS-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of σS (σS2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within σS2 to promote the assembly of the σS-RNAP holoenzyme and also to facilitate formation of an RNA polymerase-promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.


Conformation of the Intermediates in the Reaction Catalyzed by Protoporphyrinogen Oxidase: An In Silico Analysis.

  • Abigail L Barker‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Protoporphyrinogen oxidase (PPO) is a critical enzyme across life as the last common step in the synthesis of many metalloporphyrins. The reaction mechanism of PPO was assessed in silico and the unstructured loop near the binding pocket was investigated. The substrate, intermediates, and product were docked in the catalytic domain of PPO using a modified Autodock method, introducing flexibility in the macrocycles. Sixteen PPO protein sequences across phyla were aligned and analyzed with Phyre2 and ProteinPredict to study the unstructured loop from residue 204-210 in the H. sapiens structure. Docking of the substrate, intermediates, and product all resulted in negative binding energies, though the substrate had a lower energy than the others by 40%. The α-H of C10 was found to be 1.4 angstroms closer to FAD than the β-H, explaining previous reports of the reaction occurring on the meso face of the substrate. A lack of homology in sequence or length in the unstructured loop indicates a lack of function for the protein reaction. This docking study supports a reaction mechanism proposed previously whereby all hydride abstractions occur on the C10 of the tetrapyrrole followed by tautomeric rearrangement to prepare the intermediate for the next reaction.


The Rate-limiting Step of DNA Synthesis by DNA Polymerase Occurs in the Fingers-closed Conformation.

  • Geraint W Evans‎ et al.
  • Journal of molecular biology‎
  • 2022‎

DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 → 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.


MINT: software to identify motifs and short-range interactions in trajectories of nucleic acids.

  • Anna Górska‎ et al.
  • Nucleic acids research‎
  • 2015‎

Structural biology experiments and structure prediction tools have provided many high-resolution three-dimensional structures of nucleic acids. Also, molecular dynamics force field parameters have been adapted to simulating charged and flexible nucleic acid structures on microsecond time scales. Therefore, we can generate the dynamics of DNA or RNA molecules, but we still lack adequate tools for the analysis of the resulting huge amounts of data. We present MINT (Motif Identifier for Nucleic acids Trajectory) - an automatic tool for analyzing three-dimensional structures of RNA and DNA, and their full-atom molecular dynamics trajectories or other conformation sets (e.g. X-ray or nuclear magnetic resonance-derived structures). For each RNA or DNA conformation MINT determines the hydrogen bonding network resolving the base pairing patterns, identifies secondary structure motifs (helices, junctions, loops, etc.) and pseudoknots. MINT also estimates the energy of stacking and phosphate anion-base interactions. For many conformations, as in a molecular dynamics trajectory, MINT provides averages of the above structural and energetic features and their evolution. We show MINT functionality based on all-atom explicit solvent molecular dynamics trajectory of the 30S ribosomal subunit.


Solution structure of deglycosylated human IgG1 shows the role of CH2 glycans in its conformation.

  • Valentina A Spiteri‎ et al.
  • Biophysical journal‎
  • 2021‎

The human immunoglobulin G (IgG) class is the most prevalent antibody in serum, with the IgG1 subclass being the most abundant. IgG1 is composed of two Fab regions connected to a Fc region through a 15-residue hinge peptide. Two glycan chains are conserved in the Fc region in IgG; however, their importance for the structure of intact IgG1 has remained unclear. Here, we subjected glycosylated and deglycosylated monoclonal human IgG1 (designated as A33) to a comparative multidisciplinary structural study of both forms. After deglycosylation using peptide:N-glycosidase F, analytical ultracentrifugation showed that IgG1 remained monomeric and the sedimentation coefficients s020,w of IgG1 decreased from 6.45 S by 0.16-0.27 S. This change was attributed to the reduction in mass after glycan removal. X-ray and neutron scattering revealed changes in the Guinier structural parameters after deglycosylation. Although the radius of gyration (RG) was unchanged, the cross-sectional radius of gyration (RXS-1) increased by 0.1 nm, and the commonly occurring distance peak M2 of the distance distribution curve P(r) increased by 0.4 nm. These changes revealed that the Fab-Fc separation in IgG1 was perturbed after deglycosylation. To explain these changes, atomistic scattering modeling based on Monte Carlo simulations resulted in 123,284 and 119,191 trial structures for glycosylated and deglycosylated IgG1 respectively. From these, 100 x-ray and neutron best-fit models were determined. For these, principal component analyses identified five groups of structural conformations that were different for glycosylated and deglycosylated IgG1. The Fc region in glycosylated IgG1 showed a restricted range of conformations relative to the Fab regions, whereas the Fc region in deglycosylated IgG1 showed a broader conformational spectrum. These more variable Fc conformations account for the loss of binding to the Fcγ receptor in deglycosylated IgG1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: