Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 251 papers

Personalized pathway enrichment map of putative cancer genes from next generation sequencing data.

  • Peilin Jia‎ et al.
  • PloS one‎
  • 2012‎

Pathway analysis of a set of genes represents an important area in large-scale omic data analysis. However, the application of traditional pathway enrichment methods to next-generation sequencing (NGS) data is prone to several potential biases, including genomic/genetic factors (e.g., the particular disease and gene length) and environmental factors (e.g., personal life-style and frequency and dosage of exposure to mutagens). Therefore, novel methods are urgently needed for these new data types, especially for individual-specific genome data.


capTEs enables locus-specific dissection of transcriptional outputs from reference and nonreference transposable elements.

  • Xuemei Li‎ et al.
  • Communications biology‎
  • 2023‎

Transposable elements (TEs) serve as both insertional mutagens and regulatory elements in cells, and their aberrant activity is increasingly being revealed to contribute to diseases and cancers. However, measuring the transcriptional consequences of nonreference and young TEs at individual loci remains challenging with current methods, primarily due to technical limitations, including short read lengths generated and insufficient coverage in target regions. Here, we introduce a long-read targeted RNA sequencing method, Cas9-assisted profiling TE expression sequencing (capTEs), for quantitative analysis of transcriptional outputs for individual TEs, including transcribed nonreference insertions, noncanonical transcripts from various transcription patterns and their correlations with expression changes in related genes. This method selectively identified TE-containing transcripts and outputted data with up to 90% TE reads, maintaining a comparable data yield to whole-transcriptome sequencing. We applied capTEs to human cancer cells and found that internal and inserted Alu elements may employ distinct regulatory mechanisms to upregulate gene expression. We expect that capTEs will be a critical tool for advancing our understanding of the biological functions of individual TEs at the locus level, revealing their roles as both mutagens and regulators in biological and pathogenic processes.


PI 3 kinase related kinases-independent proteolysis of BRCA1 regulates Rad51 recruitment during genotoxic stress in human cells.

  • Ian Hammond-Martel‎ et al.
  • PloS one‎
  • 2010‎

The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress.


The phage T4 DNA ligase in vivo improves the survival-coupled bacterial mutagenesis.

  • Junshu Wang‎ et al.
  • Microbial cell factories‎
  • 2019‎

Microbial mutagenesis is an important avenue to acquire microbial strains with desirable traits for industry application. However, mutagens either chemical or physical used often leads narrow library pool due to high lethal rate. The T4 DNA ligase is one of the most widely utilized enzymes in modern molecular biology. Its contribution to repair chromosomal DNA damages, therefore cell survival during mutagenesis will be discussed.


Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.

  • Everett Clinton Smith‎ et al.
  • PLoS pathogens‎
  • 2013‎

No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition, and suggest that small-molecule inhibitors of ExoN activity could be potential pan-CoV therapeutics in combination with RBV or RNA mutagens.


LUMI-PCR: an Illumina platform ligation-mediated PCR protocol for integration site cloning, provides molecular quantitation of integration sites.

  • Joanna C Dawes‎ et al.
  • Mobile DNA‎
  • 2020‎

Ligation-mediated PCR protocols have diverse uses including the identification of integration sites of insertional mutagens, integrating vectors and naturally occurring mobile genetic elements. For approaches that employ NGS sequencing, the relative abundance of integrations within a complex mixture is typically determined through the use of read counts or unique fragment lengths from a ligation of sheared DNA; however, these estimates may be skewed by PCR amplification biases and saturation of sequencing coverage.


A novel approach to identify driver genes involved in androgen-independent prostate cancer.

  • Ellyn N Schinke‎ et al.
  • Molecular cancer‎
  • 2014‎

Insertional mutagenesis screens have been used with great success to identify oncogenes and tumor suppressor genes. Typically, these screens use gammaretroviruses (γRV) or transposons as insertional mutagens. However, insertional mutations from replication-competent γRVs or transposons that occur later during oncogenesis can produce passenger mutations that do not drive cancer progression. Here, we utilized a replication-incompetent lentiviral vector (LV) to perform an insertional mutagenesis screen to identify genes in the progression to androgen-independent prostate cancer (AIPC).


Menin links the stress response to genome stability in Drosophila melanogaster.

  • Maria Papaconstantinou‎ et al.
  • PloS one‎
  • 2010‎

The multiple endocrine neoplasia type I gene functions as a tumor suppressor gene in humans and mouse models. In Drosophila melanogaster, mutants of the menin gene (Mnn1) are hypersensitive to mutagens or gamma irradiation and have profound defects in the response to several stresses including heat shock, hypoxia, hyperosmolarity and oxidative stress. However, it is not known if the function of menin in the stress response contributes to genome stability. The objective of this study was to examine the role of menin in the control of the stress response and genome stability.


Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity.

  • Yifei Zhang‎ et al.
  • Scientific reports‎
  • 2018‎

Ethidium bromide (EB) and acridine orange (AO) bind to nucleic acids and are thus considered as potential mutagens. In this study, the effects of EB and AO on the germination behaviours of white, yellow, red, and purple maize seeds were investigated. The results indicate that low concentrations of EB (50 μg mL-1) and AO (500 μg mL-1) promote germination, particularly for the white and yellow seeds. However, high concentrations of EB (0.5 mg mL-1) and AO (5 mg mL-1) significantly inhibit germination, with the level of inhibition decreasing in the following order: white > yellow > red > purple. In addition, EB and AO induce H2O2 production in a concentration-dependent manner. The effects of these mutagens on seed germination were partly reversed by dimethyl thiourea, a scavenger of reactive oxygen species (ROS), and diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, while the effects were enhanced by treatment with H2O2 and 3-amino-1,2,4-triazole, a specific inhibitor of catalase. In addition, AO and EB profoundly increased NADPH oxidase activities in germinating seeds. The treatment of seeds with EB and AO did not affect the growth or drought tolerance of the resultant seedlings. The findings suggest that the mechanism of mutagen toxicity is related to the induction of ROS production.


Essential Elements and Isoflavonoids in the Prevention of Prostate Cancer.

  • Iwona J Stanisławska‎ et al.
  • Nutrients‎
  • 2022‎

The intake of selected minerals, especially zinc, calcium and selenium, and high consumption of dietary isoflavones are recognised as factors influencing prostate cancer risk. Moreover, changes in levels of some essential elements are characteristic of the disease. Here, we examined the combined effects of main dietary isoflavonoids (genistein, daidzein and its metabolite, equol) and minerals implicated in prostate cancer, namely zinc, selenium, copper, iron and calcium, on LNCaP prostate cancer cells proliferation. Secondly, we evaluated the influence of the combinations on genotoxicity of model mutagens, 4-nitroquinoline oxide (4NQO) and 2-aminoanthracene (2AA), in the umu test. All combinations of isoflavonoids and minerals inhibited prostate cancer cells growth. However, only mixtures with iron ions had significantly stronger effect than the phytochemicals. Interestingly, we observed that only genistein attenuated genotoxicity of 4NQO. The addition of any tested mineral abolished this effect. All tested isoflavonoids had anti-genotoxic activity against 2AA, which was significantly enhanced in the presence of copper sulphate. Our results indicate that the tested minerals in physiological concentrations had minimal influence on the anti-proliferative activity of isoflavonoids. However, they significantly modulated the anti-genotoxic effects of isoflavonoids against both metabolically activated and direct mutagens. Thus, the minerals intake and nutritional status may modulate protective action of isoflavonoids.


Oxidation resistance 1 functions in the maintenance of cellular survival and genome stability in response to oxidative stress-independent DNA damage.

  • Ako Matsui‎ et al.
  • Genes and environment : the official journal of the Japanese Environmental Mutagen Society‎
  • 2020‎

DNA damage is generated by various intrinsic and extrinsic sources such as reactive oxygen species (ROS) and environmental mutagens, and causes genomic alterations. DNA damage response (DDR) is activated to induce cell cycle arrest and DNA repair. Oxidation resistance 1 (OXR1) is a protein that defends cells against oxidative stress. We previously reported that OXR1 protein functions in the regulation of G2-phase cell cycle arrest in cells irradiated with gamma-rays, suggesting that OXR1 directly responds to DNA damage.


Razi's Al-Hawi and saffron (Crocus sativus): a review.

  • Hamid Mollazadeh‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2015‎

Traditional knowledge can be used as a source for development of new medicines. In the present study, we compare the data on saffron in Razi's Al-Hawi book with modern scientific studies. A computerized search of published articles was performed using MEDLINE, Scopus as well as native references. The search terms used were saffron, Crocus sativus, crocetin, crocin, safranal, Razi, and Al-Hawi. A variety of properties of saffron including diuretic, analgesic, anti-inflammatory, hepatoprotective, appetite suppressant, hypnotic, antidepressant, and bronchodilator effects were mentioned in Al-Hawi. Modern studies also confirmed most of these characteristics. This review indicates that the pharmacological data on saffron and its constituents are similar to those found in Razi's Al-Hawi monograph and it can be concluded that ethnobotanical information and ancient sources have precious data about medicinal plants that lead to finding new compounds for treatment of several diseases.


Retrotransposon vectors for gene delivery in plants.

  • Yi Hou‎ et al.
  • Mobile DNA‎
  • 2010‎

Retrotransposons are abundant components of plant genomes, and although some plant retrotransposons have been used as insertional mutagens, these mobile genetic elements have not been widely exploited for plant genome manipulation. In vertebrates and yeast, retrotransposons and retroviruses are routinely altered to carry additional genes that are copied into complementary (c)DNA through reverse transcription. Integration of cDNA results in gene delivery; recombination of cDNA with homologous chromosomal sequences can create targeted gene modifications. Plant retrotransposon-based vectors, therefore, may provide new opportunities for plant genome engineering.


Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia.

  • Jason M O'Brien‎ et al.
  • Toxicological sciences : an official journal of the Society of Toxicology‎
  • 2016‎

Although many environmental agents are established male germ cell mutagens, few are known to induce mutations in spermatogonial stem cells. Stem cell mutations are of great concern because they result in a permanent increase in the number of mutations carried in sperm. We investigated mutation induction during mouse spermatogenesis following exposure to benzo(a)pyrene (BaP). MutaMouse males were given 0, 12.5, 25, 50, or 100 mg/kg bw/day BaP for 28 days by oral gavage. Germ cells were collected from the cauda epididymis and seminiferous tubules 3 days after exposure and from cauda epididymis 42 and 70 days after exposure. This design enabled targeted investigation of effects on post-spermatogonia, dividing spermatogonia, and spermatogonial stem cells, respectively. BaP increased lacZ mutant frequency (MF) in cauda sperm after exposure of dividing spermatogonia (4.2-fold at highest dose, P < .01) and spermatogonial stem cells (2.1-fold at highest dose, P < .01). No significant increases in MF were detected in cauda sperm or seminiferous tubule cells collected 3 days post-exposure. Dose-response modelling suggested that the mutational response in male germ cells to BaP is sub-linear at low doses. Our results demonstrate that oral exposure to BaP causes spermatogonial stem cell mutations, that different phases of spermatogenesis exhibit varying sensitivities to BaP, with dividing spermatogonia representing a window of peak sensitivity, and that sampling spermatogenic cells from the seminiferous tubules at earlier time-points may underestimate germ cell mutagenicity. This information is critical to optimize the use of the international test guideline for transgenic rodent mutation assays for detecting germ cell mutagens.


NSAID use and somatic exomic mutations in Barrett's esophagus.

  • Patricia C Galipeau‎ et al.
  • Genome medicine‎
  • 2018‎

Use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been shown to protect against tetraploidy, aneuploidy, and chromosomal alterations in the metaplastic condition Barrett's esophagus (BE) and to lower the incidence and mortality of esophageal adenocarcinoma (EA). The esophagus is exposed to both intrinsic and extrinsic mutagens resulting from gastric reflux, chronic inflammation, and exposure to environmental carcinogens such as those found in cigarettes. Here we test the hypothesis that NSAID use inhibits accumulation of point mutations/indels during somatic genomic evolution in BE.


Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells.

  • Anuska G Mahabir‎ et al.
  • BMC genomics‎
  • 2010‎

Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC) as compared to wild-type (WT) cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM) and gamma-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts) after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU) and vehicle were taken as controls.


Early-life exposure to benzo[a]pyrene increases mutant frequency in spermatogenic cells in adulthood.

  • Guogang Xu‎ et al.
  • PloS one‎
  • 2014‎

Children are vulnerable to environmental mutagens, and the developing germline could also be affected. However, little is known about whether exposure to environmental mutagens in childhood will result in increased germline mutations in subsequent adult life. In the present study, male transgenic lacI mice at different ages (7, 25 and 60 days old) were treated with a known environmental mutagen (benzo[a]pyrene, B[a]P) at different doses (0, 50, 200 or 300 mg/kg body weight). Mutant frequency was then determined in a meiotic cell type (pachytene spermatocyte), a post-meiotic cell type (round spermatid) and epididymal spermatozoa after at least one cycle of spermatogenesis. Our results show that 1) mice treated with B[a]P at 7 or 25 days old, both being pre-adult ages, had significantly increased mutant frequencies in all spermatogenic cell types tested when they were 60 days old; 2) spermatogenic cells from mice treated before puberty were more susceptible to B[a]P-associated mutagenesis compared to adult mice; and 3) unexpectedly, epididymal spermatozoa had the highest mutant frequency among the spermatogenic cell types tested. These data show that pre-adult exposure to B[a]P increases the male germline mutant frequency in young adulthood. The data demonstrate that exposure to environmental genotoxins at different life phases (e.g., pre-adult and adult) can have differential effects on reproductive health.


Analyses of mutational patterns induced by formaldehyde and acetaldehyde reveal similarity to a common mutational signature.

  • Mahanish J Thapa‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2022‎

Formaldehyde and acetaldehyde are reactive small molecules produced endogenously in cells as well as being environmental contaminants. Both of these small aldehydes are classified as human carcinogens, since they are known to damage DNA and exposure is linked to cancer incidence. However, the mutagenic properties of formaldehyde and acetaldehyde remain incompletely understood, at least in part because they are relatively weak mutagens. Here, we use a highly sensitive yeast genetic reporter system featuring controlled generation of long single-stranded DNA regions to show that both small aldehydes induced mutational patterns characterized by predominantly C/G → A/T, C/G → T/A, and T/A → C/G substitutions, each in similar proportions. We observed an excess of C/G → A/T transversions when compared to mock-treated controls. Many of these C/G → A/T transversions occurred at TC/GA motifs. Interestingly, the formaldehyde mutational pattern resembles single base substitution signature 40 from the Catalog of Somatic Mutations in Cancer. Single base substitution signature 40 is a mutational signature of unknown etiology. We also noted that acetaldehyde treatment caused an excess of deletion events longer than 4 bases while formaldehyde did not. This latter result could be another distinguishing feature between the mutational patterns of these simple aldehydes. These findings shed new light on the characteristics of 2 important, commonly occurring mutagens.


Induction of mismatch repair deficiency, compromised DNA damage signaling and compound hypermutagenesis by a dietary mutagen in a cell-based model for Lynch syndrome.

  • Robbert Ijsselsteijn‎ et al.
  • Carcinogenesis‎
  • 2022‎

The prevalent cancer predisposition Lynch syndrome (LS, OMIM #120435) is caused by an inherited heterozygous defect in any of the four core DNA mismatch repair (MMR) genes MSH2, MSH6, MLH1 or PMS2. MMR repairs errors by the replicative DNA polymerases in all proliferating tissues. Its deficiency, following somatic loss of the wild-type copy, results in a spontaneous mutator phenotype that underlies the rapid development of, predominantly, colorectal cancer (CRC) in LS. Here, we have addressed the hypothesis that aberrant responses of intestinal stem cells to diet-derived mutagens may be causally involved in the restricted cancer tropism of LS. To test this we have generated a panel of isogenic mouse embryonic stem (mES) cells with heterozygous or homozygous disruption of multiple MMR genes and investigated their responses to the common dietary mutagen and carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Our data reveal that PhIP can inactivate the wild-type allele of heterozygous mES cells via the induction of either loss of heterozygosity (LOH) or intragenic mutations. Moreover, while protective DNA damage signaling (DDS) is compromised, PhIP induces more mutations in Msh2, Mlh1, Msh6 or Pms2-deficient mES cells than in wild-type cells. Combined with their spontaneous mutator phenotypes, this results in a compound hypermutator phenotype. Together, these results indicate that dietary mutagens may promote CRC development in LS at multiple levels, providing a rationale for dietary modifications in the management of LS.


Germinating conidiospores of Aspergillus amino acid auxotrophs are hypersensitive to heat shock, oxidative stress and DNA damage.

  • E Donnelly‎ et al.
  • FEBS letters‎
  • 1994‎

Germinating conidiospores (conidia) of Aspergillus nidulans amino acid-requiring strains are hypersensitive to heat, oxidative stress, UV radiation and chemical mutagens when compared with other strains. They also showed an increased mutation rate. Sensitivity to stress conditions has been correlated with an abnormal RAS/cAMP pathway in mutants of S. cerevisiae. We suggest that the RAS/cAMP pathway is defective in germinating conidia of Aspergillus amino acid auxotrophs and that this is responsible for suppressing DNA repair and conferring sensitivity to oxidative stress and heat shock.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: