Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 1,123 papers

Bactericidal Disruption of Magnesium Metallostasis in Mycobacterium tuberculosis Is Counteracted by Mutations in the Metal Ion Transporter CorA.

  • Landys Lopez Quezada‎ et al.
  • mBio‎
  • 2019‎

A defining characteristic of treating tuberculosis is the need for prolonged administration of multiple drugs. This may be due in part to subpopulations of slowly replicating or nonreplicating Mycobacterium tuberculosis bacilli exhibiting phenotypic tolerance to most antibiotics in the standard treatment regimen. Confounding this problem is the increasing incidence of heritable multidrug-resistant M. tuberculosis A search for new antimycobacterial chemical scaffolds that can kill phenotypically drug-tolerant mycobacteria uncovered tricyclic 4-hydroxyquinolines and a barbituric acid derivative with mycobactericidal activity against both replicating and nonreplicating M. tuberculosis Both families of compounds depleted M. tuberculosis of intrabacterial magnesium. Complete or partial resistance to both chemotypes arose from mutations in the putative mycobacterial Mg2+/Co2+ ion channel, CorA. Excess extracellular Mg2+, but not other divalent cations, diminished the compounds' cidality against replicating M. tuberculosis These findings establish depletion of intrabacterial magnesium as an antimicrobial mechanism of action and show that M. tuberculosis magnesium homeostasis is vulnerable to disruption by structurally diverse, nonchelating, drug-like compounds.IMPORTANCE Antimycobacterial agents might shorten the course of treatment by reducing the number of phenotypically tolerant bacteria if they could kill M. tuberculosis in diverse metabolic states. Here we report two chemically disparate classes of agents that kill M. tuberculosis both when it is replicating and when it is not. Under replicating conditions, the tricyclic 4-hydroxyquinolines and a barbituric acid analogue deplete intrabacterial magnesium as a mechanism of action, and for both compounds, mutations in CorA, a putative Mg2+/Co2+ transporter, conferred resistance to the compounds when M. tuberculosis was under replicating conditions but not under nonreplicating conditions, illustrating that a given compound can kill M. tuberculosis in different metabolic states by disparate mechanisms. Targeting magnesium metallostasis represents a previously undescribed antimycobacterial mode of action that might cripple M. tuberculosis in a Mg2+-deficient intraphagosomal environment of macrophages.


6-Shogaol attenuated ethylene glycol and aluminium chloride induced urolithiasis and renal injuries in rodents.

  • Muhammad Afzal‎ et al.
  • Saudi journal of biological sciences‎
  • 2021‎

The 6-shogaol, is a flavanone type flavonoid that is abundant in citrus fruit and has a wide range of pharmacological effects. The present study attempted to evaluate the antiurolithic effect of 6-shogaol on ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. The efficacy of 6-shogaol 50 mg/kg and 100 mg/kg was studied in EG 0.75% (V/V) and AC 1% (W/V) experimentally induced urolithiasis in rats for 21 days. The weight difference, urine volume, the levels of calcium, phosphate, magnesium, oxalate and uric acid in urine was observed. The blood urea nitrogen, creatinine, uric acid in serum and levels of malondialdehyde (MDA) and glutathione (GSH) were also measured. Histopathological analyses in kidneys were also performed. The rats weights were higher in the 6-shogaol groups than the urolithiasis group. EG caused a significant increase in serum creatinine (p < 0.05), BUN (P < 0.001), and uric acid (p < 0.01) while treatment with Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) showed the significant reduction in increased serum levels of creatinine (p < 0.001), uric acid (p < 0.01) and BUN (p < 0.001). Administration of EG and AC showed statistically significant (p < 0.001) elevated levels of MDA and reduction in GSH levels. Treatment of Cystone (750 mg/kg), and 6-shogaol (50 and 100 mg/kg) significantly (p < 0.001) reduced MDA levels and an increase GSH levels as compared to EG and AC-treated group. The histological findings further attested antiurolithiatic properties of 6-shogaol. The present study attributed clinical shreds of evidence first time that claiming the significant antiurolithic effect of 6-shogaol and could be a cost-effective candidate for the prevention and treatment of urolithiasis.


Morphological and Surface Potential Characterization of Protein Nanobiofilm Formation on Magnesium Alloy Oxide: Their Role in Biodegradation.

  • Ehsan Rahimi‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2022‎

The formation of a protein nanobiofilm on the surface of degradable biomaterials such as magnesium (Mg) and its alloys influences metal ion release, cell adhesion/spreading, and biocompatibility. During the early stage of human body implantation, competition and interaction between inorganic species and protein molecules result in a complex film containing Mg oxide and a protein layer. This film affects the electrochemical properties of the metal surface, the protein conformational arrangement, and the electronic properties of the protein/Mg oxide interface. In this study, we discuss the impact of various simulated body fluids, including sodium chloride (NaCl), phosphate-buffered saline (PBS), and Hanks' solutions on protein adsorption, electrochemical interactions, and electrical surface potential (ESP) distribution at the adsorbed protein/Mg oxide interface. After 10 min of immersion in NaCl, atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) showed a higher surface roughness related to enhanced degradation and lower ESP distribution on a Mg-based alloy than those in other solutions. Furthermore, adding bovine serum albumin (BSA) to all solutions caused a decline in the total surface roughness and ESP magnitude on the Mg alloy surface, particularly in the NaCl electrolyte. Using SKPFM surface analysis, we detected a protein nanobiofilm (∼10-20 nm) with an aggregated and/or fibrillary morphology only on the Mg surface exposed in Hanks' and PBS solutions; these surfaces had a lower ESP value than the oxide layer.


Effects of intravenous magnesium sulfate on serum calcium-regulating hormones and plasma and urinary electrolytes in healthy horses.

  • Stephen A Schumacher‎ et al.
  • PloS one‎
  • 2021‎

Intravenous magnesium sulfate (MgSO4) is used in equine practice to treat hypomagnesemia, dysrhythmias, neurological disorders, and calcium dysregulation. MgSO4 is also used as a calming agent in equestrian events. Hypercalcemia affects calcium-regulating hormones, as well as plasma and urinary electrolytes; however, the effect of hypermagnesemia on these variables is unknown. The goal of this study was to investigate the effect of hypermagnesemia on blood parathyroid hormone (PTH), calcitonin (CT), ionized calcium (Ca2+), ionized magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-) and their urinary fractional excretion (F) after intravenous administration of MgSO4 in healthy horses. Twelve healthy female horses of 4-18 years of age and 432-600 kg of body weight received a single intravenous dose of MgSO4 (60 mg/kg) over 5 minutes, and blood and urine samples were collected at different time points over 360 minutes. Plasma Mg2+ concentrations increased 3.7-fold over baseline values at 5 minutes and remained elevated for 120 minutes (P < 0.05), Ca2+ concentrations decreased from 30-60 minutes (P < 0.05), but Na+, K+ and Cl- concentrations did not change. Serum PTH concentrations dropped initially to rebound and remain elevated from 30 to 60 minutes, while CT concentrations increased at 5 minutes to return to baseline by 10 minutes (P < 0.05). The FMg, FCa, FNa, FK, and FCl increased, while urine osmolality decreased from 30-60 minutes compared baseline (P < 0.05). Short-term experimental hypermagnesemia alters calcium-regulating hormones (PTH, CT), reduces plasma Ca2+ concentrations, and increases the urinary excretion of Mg2+, Ca2+, K+, Na+ and Cl- in healthy horses. This information has clinical implications for the short-term effects of hypermagnesemia on calcium-regulation, electrolytes, and neuromuscular activity, in particular with increasing use of Mg salts to treat horses with various acute and chronic conditions as well as a calming agent in equestrian events.


The determination of magnesium in human blood plasma by 31P magnetic resonance spectroscopy using a macrocyclic reporter ligand.

  • J Huskens‎ et al.
  • Biochimica et biophysica acta‎
  • 1997‎

The ligand 1,4,7-triazacyclononane-1,4,7-tris(methylene methylphosphinic acid), NOTMP, was used to measure free MgII levels in blood plasma by 31P MRS. Separate resonances were observed for the free ligand and the MgII complex and the ratio of their resonance areas was used to evaluate the free, ionized MgII concentration, [Mg]free. The CaII and the ZnII complexes gave rise to separate resonances in the 31P spectrum in an aqueous sample. In human blood plasma samples, however, these resonances were never observed thus excluding the interference of these metal ions. Heparin, up to 150 units/ml, had no influence on the Mg-NOTMP equilibrium. The 31P MRS methodology was applied to twenty human blood plasma samples. Total MgII ([Mg]total), as measured by atomic absorption spectroscopy, averaged 0.85 +/- 0.12 mM while free ionized MgII ([Mg]free) measured by 31P MRS was 0.66 +/- 0.09 mM. The 31P MRS method gave inherently larger values for free ionized MgII than that reported by ion-selective electrodes (ISE). This was traced to a redistribution of existing plasma MgII species after the addition of about 2 mM of NOTMP. Calculations using existing thermodynamic data show that the ionized MgII concentration (iMg) and the concentration of MgII weakly complexed to small anions (Mg(comp)) both drop after the addition of NOTMP, with Mg(comp) dropping to negligible levels. Thus, the 31P MRS method appears to be less sensitive to variations in the concentration of weakly binding anions (bicarbonate, carbonate, chloride, lactate, phosphate, etc.) than the ISE method. Our data indicates that the difference between Mg(total), as measured by atomic absorption spectroscopy, and Mg(free), as measured by 31P MRS, provides an direct estimate of the protein bound MgII fraction.


Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine.

  • Mark G Fox-Powell‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg2+ and SO42- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na+/Cl- brines (12.141 mol liter-1). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na2SO4, MgCl2, and MgSO4, yet despite this plasticity the strain was still restricted; requiring either Na+ or Cl- to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.


Taurine-magnesium coordination compound, a potential anti-arrhythmic complex, improves aconitine-induced arrhythmias through regulation of multiple ion channels.

  • Jianshi Lou‎ et al.
  • Toxicology and applied pharmacology‎
  • 2018‎

Taurine-magnesium coordination compound (TMCC) exhibits antiarrhythmic effects in cesium-chloride-and ouabain-induced arrhythmias; however, the mechanism underlying these effects on arrhythmia remains poorly understood. Here, we investigated the effects of TMCC on aconitine-induced arrhythmia in vivo and the electrophysiological effects of this compound in rat ventricular myocytes in vitro. Aconitine was used to induce arrhythmias in rats, and the dosages required to produce ventricular premature contraction (VPC), ventricular tachycardia (VT), ventricular fibrillation (VF), and cardiac arrest (CA) were recorded. Additionally, the sodium current (INa) and L-type calcium current (ICa,L) were analyzed in normal and aconitine-treated ventricular myocytes using whole-cell patch-clamp recording. In vivo, intravenous administration of TMCC produced marked antiarrhythmic effects, as indicated by the increased dose of aconitine required to induce VPC, VT, VF, and CA. Moreover, this effect was abolished by administration of sodium channel opener veratridine and calcium channel agonist Bay K8644. In vitro, TMCC inhibited aconitine-induced increases in INa and ICa,L. These results revealed that TMCC inhibited aconitine-induced arrhythmias through effects on INa and ICa,L.


Characterization of Magnesium and Zinc Forms of Sodalite Coatings on Ti6Al4V ELI for Potential Application in the Release of Drugs for Osteoporosis.

  • Mariusz Sandomierski‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2023‎

Osteoporosis is the most common metabolic disease of the skeletal system and is characterized by impaired bone strength. This translates into an increased risk of low-energy fractures, which means fractures caused by disproportionate force. This disease is quite insidious, its presence is usually detected only at an advanced stage, where treatment with pharmaceuticals does not produce sufficient results. It is obligatory to replace the weakened bone with an implant. For this reason, it is necessary to look at the possibilities of surface modification used in tissue engineering, which, in combination with the drugs for osteoporosis, i.e., bisphosphonates, may constitute a new and effective method for preventing the deterioration of the osteoporotic state. To achieve this purpose, titanium implants coated with magnesium or zinc zeolite were prepared. Both the sorption and release profiles differed depending on the type of ion in the zeolite structure. The successful release of risedronate from the materials at a low level was proven. It can be concluded that the proposed solution will allow the preparation of endoprostheses for patients with bone diseases such as osteoporosis.


Magnesium Attenuates Phosphate-Induced Deregulation of a MicroRNA Signature and Prevents Modulation of Smad1 and Osterix during the Course of Vascular Calcification.

  • Loïc Louvet‎ et al.
  • BioMed research international‎
  • 2016‎

Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease (CKD). High phosphate levels promote VC by inducing abnormalities in mineral and bone metabolism. Previously, we demonstrated that magnesium (Mg(2+)) prevents inorganic phosphate- (Pi-) induced VC in human aortic vascular smooth muscle cells (HAVSMC). As microRNAs (miR) modulate gene expression, we investigated the role of miR-29b, -30b, -125b, -133a, -143, and -204 in the protective effect of Mg(2+) on VC. HAVSMC were cultured in the presence of 3 mM Pi with or without 2 mM Mg(2+) chloride. Total RNA was extracted after 4 h, 24 h, day 3, day 7, and day 10. miR-30b, -133a, and -143 were downregulated during the time course of Pi-induced VC, whereas the addition of Mg(2+) restored (miR-30b) or improved (miR-133a, miR-143) their expression. The expression of specific targets Smad1 and Osterix was significantly increased in the presence of Pi and restored by coincubation with Mg(2+). As miR-30b, miR-133a, and miR-143 are negatively regulated by Pi and restored by Mg(2+) with a congruent modulation of their known targets Runx2, Smad1, and Osterix, our results provide a potential mechanistic explanation of the observed upregulation of these master switches of osteogenesis during the course of VC.


MicroRNA-16, via FGF2 Regulation of the ERK/MAPK Pathway, Is Involved in the Magnesium-Promoted Osteogenic Differentiation of Mesenchymal Stem Cells.

  • Hong Qi‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

microRNAs (miRNAs) participate in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, few reports have discussed the effect of miRNAs on the magnesium chloride (MgCl2)-induced promotion of osteogenic differentiation of BMSCs, a process involved in the healing of bone tissue. As determined in the present investigation, MgCl2 decreased miR-16 levels; increased levels of fibroblast growth factor 2 (FGF2), p-p38, and p-ERK; and promoted the osteogenic differentiation of BMSCs. Enhancement of miR-16 levels by an miR-16 mimic blocked these MgCl2-induced changes. Moreover, luciferase reporter assays confirmed that miR-16 binds to the 3'UTR region of FGF2 mRNA. Down-regulation of FGF2 blocked the MgCl2-induced increases of p-p38 and p-ERK and the promotion of the osteogenic differentiation of BMSCs. Furthermore, over-expression of miR-16 attenuated the MgCl2-induced overproduction of p-p38 and p-ERK1/2 and the high levels of osteogenic differentiation, effects that were reversed by elevated expression of FGF2. In summary, the present findings provide a mechanism by which miR-16 regulates MgCl2-induced promotion of osteogenic differentiation by targeting FGF2-mediated activation of the ERK/MAPK pathway.


Effect of Cadmium Chloride and Cadmium Nitrate on Growth and Mineral Nutrient Content in the Root of Fava Bean (Vicia faba L.).

  • Beáta Piršelová‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The present study aimed to analyze the differences in the tolerance of fava bean (Vicia faba cv. Aštar) roots to cadmium in nitrate-Cd(NO3)2-and chloride-CdCl2-solutions. The physiological and biochemical parameters were assessed. The tested doses of Cd (50, 100, 150 and 300 mg/L) did not influence the germination of seeds. However, considerable growth inhibition and dehydration were observed after 96 h incubation. The thickness of roots and rupture of cell membranes increased along with the increasing concentration of the metal in the solution. At a Cd dose of 300 mg/L, irrespective of the solution used, increased nitrogen concentration and no change in sodium content were observed. The content of magnesium increased due to the dose of 100 mg/L (cadmium nitrate) and the content of calcium increased due to the dose of 300 mg/L (in either nitrate or chloride). The correlation analyses pointed to a possible effect of nitrates in the applied solutions on the accumulation of Cd and some minerals in the roots of the given variety of fava bean. This may be important for both research and agricultural practice. The identification of crops with high tolerance to cadmium, as well as knowledge about the mechanisms of ion interactions at the soil solution-plant level, is important in terms of such crops' use in the process of the remediation of cadmium-contaminated soils coupled with food production.


In Situ Neutral System Synthesis, Spectroscopic, and Biological Interpretations of Magnesium(II), Calcium(II), Chromium(III), Zinc(II), Copper(II) and Selenium(IV) Sitagliptin Complexes.

  • Samy M El-Megharbel‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Magnesium(II), calcium(II), chromium(III), zinc(II), copper(II), and selenium(IV) sitagliptin (STG) complexes-with the general formulas [Mg(STG)2(Cl)2]·6H2O, [Ca(STG)2(Cl)2], [Cr(STG)2(Cl)2]Cl.6H2O, [Zn(STG)2(Cl)2], [Cu(STG)2(Cl)2]·2H2O, and [Se(STG)2(Cl)2]Cl2, respectively-were designed and synthesized by the chemical reactions between metal(II, III, and IV) chloride salts with an STG ligand in situ methanol solvent in a 1:2 stoichiometric ratio (metal:ligand). Tentative structures of the complexes were proposed based on elemental analysis, molar conductance, magnetic moments, thermogravimetric analysis, and spectral (infrared, electronic, and 1H NMR) data. The particle size and morphological investigation were checked on the bases of scanning electron microscopy, transmission electron microscopy, and X-ray powder diffraction analyses. All the Mg2+, Ca2+, Cr3+, Zn2+, Cu2+, and Se4+ complexes were found to be six-coordinated, wherein the STG ligands act as bidentate chelating agents. This study demonstrates that pancreatic tissues are affected by the induction of experimental diabetes mellitus and clarifies the potential of the synthesized STG complexes, which was found to more significantly improve insulin secretion and the pancreatic and glycometabolic complications of diabetic rats than STG alone.


Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity.

  • Petra Schwendner‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.


The effect of complete replacing sodium with potassium, calcium, and magnesium brine on sodium-free ultrafiltration Feta cheese at the end of the 60-day ripening period: Physicochemical, proteolysis-lipolysis indices, microbial, colorimetric, and sensory evaluation.

  • Razieh Zonoubi‎ et al.
  • Food science & nutrition‎
  • 2021‎

The effect of complete substitution of NaCl with KCl, MgCl2, and CaCl2 in brine used for the ripening stage in Na-free ultrafiltration (UF) Feta cheese making investigated. The chemical, microbial, textural, colorimetric, and sensory evaluation did at the end of the 60-day ripening period. As the ripening period of the cheese increased, the amount of acidity and total solid significantly increased while pH and moisture significantly decreased. All chloride salts exerted a significant antimicrobial effect on the fermentation growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. The highest hardness and syneresis on the first day seen in the samples containing sodium chloride and the lowest hardness and syneresis on the sixty day recognized in the samples containing magnesium chloride. There was no significant difference in whiteness index for monovalent salts in the first and sixtieth days of storage, and of course, this difference was not significant between divalent salts. There was no significant difference in overall acceptance score between sodium and potassium brine, although these two treatments had a significant difference compared with the others. There was no significant difference in the overall acceptance of cheeses stored in calcium and magnesium brine.


Selective Functionalization of Carbonyl Closo-Decaborate [2-B10H9CO]- with Building Block Properties via Grignard Reagents.

  • Nadine Mahfouz‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

A green, fast and selective approach for the synthesis of mono-substituted closo-decaborate derivatives [2-B10H9COR]2- has been established via a nucleophilic addition reaction between the carbonyl derivative of closo-decaborate [2-B10H9CO]- and the corresponding Grignard reagent RMgX, where R is the ethyl, iso-propyl, pentyl, allyl, vinyl and propynyl groups. This approach is accomplished under mild conditions with 70-80% yields. The significance of these derivative is their ability to constitute building blocks for polymeric integration via the allyl, vinyl and propynyl substituents. All products were characterized by 11B, 1H and 13C NMR, elemental analysis and mass spectrometry.


Bisphenol A Diglycidyl Ether (BADGE) and Progesterone Do Not Induce Ca2+ Signals in Boar Sperm Cells.

  • Anders Rehfeld‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Exposure of boar sperm cells to Bisphenol A diglycidyl ether (BADGE) has been shown to lead to reproductive failure in sows, however, the mode of action is unknown. As we have recently shown that BADGE can interfere with Ca2 + signaling in human sperm cells through an action on CatSper, and as CatSper has been shown to be expressed in boar sperm cells, we hypothesized that a similar mechanism in the boar sperm cells could be responsible for the reproductive failure.


Rationalizing ethnopharmacological uses of Alternanthera sessilis: A folk medicinal plant of Pakistan to manage diarrhea, asthma and hypertension.

  • Fatima Saqib‎ et al.
  • Journal of ethnopharmacology‎
  • 2016‎

Tribal herbal practitioners of Pakistan use Alternanthera sessilis (Amaranthaceae) to treat diarrhea, asthma and hypertension.


Anti-cholinergic and Ca2+-antagonist mechanisms explain the pharmacological basis for folkloric use of Sisymbrium irio Linn. in gastrointestinal, airways and vascular system ailments.

  • Musaddique Hussain‎ et al.
  • Journal of ethnopharmacology‎
  • 2016‎

Seeds of Sisymbrium irio Linn has been used traditionally in different regions of Pakistan for the treatment of gastrointestinal, airways and vascular system ailments. To insight the pharmacological basis, in vitro study was conducted in order to validate its folkloric uses.


Wireless, Flexible, Ion-Selective Electrode System for Selective and Repeatable Detection of Sodium.

  • Hyo-Ryoung Lim‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

Wireless, flexible, ion-selective electrodes (ISEs) are of great interest in the development of wearable health monitors and clinical systems. Existing film-based electrochemical sensors, however, still have practical limitations due to poor electrical contact and material-interfacial leakage. Here, we introduce a wireless, flexible film-based system with a highly selective, stable, and reliable sodium sensor. A flexible and hydrophobic composite with carbon black and soft elastomer serves as an ion-to-electron transducer offering cost efficiency, design simplicity, and long-term stability. The sensor package demonstrates repeatable analysis of selective sodium detection in saliva with good sensitivity (56.1 mV/decade), stability (0.53 mV/h), and selectivity coefficient of sodium against potassium (-3.0). The film ISEs have an additional membrane coating that provides reinforced stability for the sensor upon mechanical bending. Collectively, the comprehensive study of materials, surface chemistry, and sensor design in this work shows the potential of the wireless flexible sensor system for low-profile wearable applications.


Anion-Specific Adsorption of Carboxymethyl Cellulose on Cellulose.

  • Vishnu Arumughan‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2023‎

Integration of fiber modification step with a modern pulp mill is a resource efficient way to produce functional fibers. Motivated by the need to integrate polymer adsorption with the current pulping system, anion-specific effects in carboxymethylcellulose (CMC) adsorption have been studied. The QCM-D adsorption experiments revealed that CMC adsorption to the cellulose model surface is prone to anion-specific effects. A correlation was observed between the adsorbed CMC and the degree of hydration of the co-ions present in the magnesium salts. The presence of a chaotropic co-ion such as nitrate increased the adsorption of CMC on cellulose compared to the presence of the kosmotropic sulfate co-ion. However, anion-specificity was not significant in the case of salts containing zinc cations. The hydration of anions determines the distribution of the ions at the interface. Chaotropic ions, such as nitrates, are likely to be distributed near the chaotropic cellulose surface, causing changes in the ordering of water molecules and resulting in greater entropy gain once released from the surface, thus increasing CMC adsorption.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: