Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 115 papers

VSTM2A suppresses colorectal cancer and antagonizes Wnt signaling receptor LRP6.

  • Yujuan Dong‎ et al.
  • Theranostics‎
  • 2019‎

Hyperactivation of Wnt/β-catenin signaling pathway is a critical step in colorectal tumorigenesis. In this study, we identified that V-set and transmembrane domain containing 2A (VSTM2A) was a top-downregulated secreted protein that negatively regulated Wnt singling pathways in colorectal cancer (CRC). We investigated the functional mechanisms and clinical implication of VSTM2A in CRC. Methods: Function of VSTM2A was investigated in vitro and in vivo. VSTM2A binding partner was identified by mass spectrometry, immunoprecipitation and Western blot. The clinical impact of VSTM2A was assessed in 355 CRC patients and TCGA cohort. Results: VSTM2A protein was prominently silenced in CRC tumor tissues and cell lines mediated by its promoter hypermethylation. VSTM2A DNA promoter hypermethylation and VSTM2A protein downregulation was associated with poor survival of CRC patients. Ectopic expression of VSTM2A inhibited colon cancer cell lines and organoid growth, induced CRC cells apoptosis, inhibited cell migration and invasion, and suppressed growth of xenograft tumors in nude mice. VSTM2A was released from CRC cells through a canonical secretion pathway. Secreted VSTM2A significantly suppressed Wnt signaling pathway in colon cancer cells. Wnt signaling co-receptor LDL receptor related protein 6 (LRP6) was identified as a cell membrane binding partner of VSTM2A. Using deletion/mutation and immunoprecipitation, we demonstrated that VSTM2A bound to LRP6 E1-4 domain with its IgV domain. VSTM2A suppressed LRP6 phosphorylation in a time and dose dependent manner, and induced LRP6 endocytosis and lysosome-mediated degradation, which collectively contributing to the inactivation of Wnt signaling. Conclusions: VSTM2A is a novel antagonist of canonical Wnt signaling by directly binding to LRP6 and induces LRP6 endocytosis and degradation. VSTM2A is a potential prognostic biomarker for the outcome of CRC patients.


Glycyrrhizin Derivatives Suppress Cancer Chemoresistance by Inhibiting Progesterone Receptor Membrane Component 1.

  • Yasuaki Kabe‎ et al.
  • Cancers‎
  • 2021‎

Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.


Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor.

  • Katherine Basore‎ et al.
  • Nature‎
  • 2021‎

LDLRAD3 is a recently defined attachment and entry receptor for Venezuelan equine encephalitis virus (VEEV)1, a New World alphavirus that causes severe neurological disease in humans. Here we present near-atomic-resolution cryo-electron microscopy reconstructions of VEEV virus-like particles alone and in a complex with the ectodomains of LDLRAD3. Domain 1 of LDLRAD3 is a low-density lipoprotein receptor type-A module that binds to VEEV by wedging into a cleft created by two adjacent E2-E1 heterodimers in one trimeric spike, and engages domains A and B of E2 and the fusion loop in E1. Atomic modelling of this interface is supported by mutagenesis and anti-VEEV antibody binding competition assays. Notably, VEEV engages LDLRAD3 in a manner that is similar to the way that arthritogenic alphaviruses bind to the structurally unrelated MXRA8 receptor, but with a much smaller interface. These studies further elucidate the structural basis of alphavirus-receptor interactions, which could inform the development of therapies to mitigate infection and disease against multiple members of this family.


Proprotein convertase subtilisin/kexin type 9 is a psoriasis-susceptibility locus that is negatively related to IL36G.

  • Alexander Merleev‎ et al.
  • JCI insight‎
  • 2022‎

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a posttranslational regulator of the LDL receptor (LDLR). Recent studies have proposed a role for PCSK9 in regulating immune responses. Using RNA-Seq-based variant discovery, we identified a possible psoriasis-susceptibility locus at 1p32.3, located within PCSK9 (rs662145 C > T). This finding was verified in independently acquired genomic and RNA-Seq data sets. Single-cell RNA-Seq (scRNA-Seq) identified keratinocytes as the primary source of PCSK9 in human skin. PCSK9 expression, however, was not uniform across keratinocyte subpopulations. scRNA-Seq and IHC demonstrated an epidermal gradient of PCSK9, with expression being highest in basal and early spinous layer keratinocytes and lowest in granular layer keratinocytes. IL36G expression followed the opposite pattern, with expression highest in granular layer keratinocytes. PCSK9 siRNA knockdown experiments confirmed this inverse relationship between PCSK9 and IL36G expression. Other immune genes were also linked to PCSK9 expression, including IL27RA, IL1RL1, ISG20, and STX3. In both cultured keratinocytes and nonlesional human skin, homozygosity for PCSK9 SNP rs662145 C > T was associated with lower PCSK9 expression and higher IL36G expression, when compared with heterozygous skin or cell lines. Together, these results support PCSK9 as a psoriasis-susceptibility locus and establish a putative link between PCSK9 and inflammatory cytokine expression.


The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish.

  • Bernd Willems‎ et al.
  • PloS one‎
  • 2015‎

During vertebrate neurulation, cranial neural crest cells (CNCCs) undergo epithelial to mesenchymal transition (EMT), delaminate from the neural plate border, and migrate as separate streams into different cranial regions. There, they differentiate into distinct parts of the craniofacial skeleton. Canonical Wnt signaling has been shown to be essential for this process at different levels but the involved receptors remained unclear. Here we show that the frizzled co-receptor low-density-lipoprotein (LDL) receptor-related protein 5 (Lrp5) plays a crucial role in CNCC migration and morphogenesis of the cranial skeleton. Early during induction and migration of CNCCs, lrp5 is expressed ubiquitously but later gets restricted to CNCC derivatives in the ventral head region besides different regions in the CNS. A knock-down of lrp5 does not interfere with induction of CNCCs but leads to reduced proliferation of premigratory CNCCs. In addition, cell migration is disrupted as CNCCs are found in clusters at ectopic positions in the dorsomedial neuroepithelium after lrp5 knock-down and transient CRISPR/Cas9 gene editing. These migratory defects consequently result in malformations of the craniofacial skeleton. To date, Lrp5 has mainly been associated with bone homeostasis in mammals. Here we show that in zebrafish, lrp5 also controls cell migration during early morphogenetic processes and contributes to shaping the craniofacial skeleton.


Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells.

  • Yi Jing‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a promising target for treating dyslipidemia and atherosclerosis. Circulating PCSK9 levels are closely related to hepatic steatosis severity and endogenous estrogen levels. Resveratrol (RSV) is a phytoestrogens that protects against atherosclerosis and hepatic steatosis. Thus, we sought to determine whether RSV had the activities to inhibit PCSK9 expression and to attenuate lipid accumulation in free fatty acid (FFA)-induced L02 cells via ERα pathway. In this study, RSV (10, 20 μM) were cultured with L02 cells in the presence of FFA (oleate:palmitate = 2:1). RSV significantly reduced the number of lipid droplets and intracellular TG in steatotic L02 cells, and Oil red O staining and Nile red staining had the same results. Western blot analysis showed that RSV significantly reduced apoB secretion and intracellular microsomal triglyceride transporter (MTP) expression under lipid-rich conditions. Treatment with RSV reduced expression of PCSK9 while maintaining LDL receptor (LDLR) expression and LDL uptake. RSV decreased SREBP-1c expression at both mRNA and protein levels. In addition, RSV significantly reduced the expression of liver X receptor α (LXRα) mRNA in L02 cells, but did not affect the expression of liver X receptor β (LXRβ) mRNA. The luciferase reporter assays suggested that RSV inhibited SREBP-mediated transcription of PCSK9. Finally, these results could be partly reversed by Estrogen receptor α (ERα) gene silencing. These results suggest that RSV attenuates steatosis and PCSK9 expression through down-regulation of SREBP-1c expression, at least in part through ERα-mediated pathway.


Extracellular LDLR repeats modulate Wnt signaling activity by promoting LRP6 receptor endocytosis mediated by the Itch E3 ubiquitin ligase.

  • Sapna Vijayakumar‎ et al.
  • Genes & cancer‎
  • 2017‎

The LOW-density lipoprotein related protein 6 (LRP6) receptor is an important effector of canonical Wnt signaling, a developmental pathway, whose dysregulation has been implicated in various diseases including cancer. The membrane proximal low-density lipoprotein (LDL) receptor repeats in LRP6 exhibit homology to ligand binding repeats in the LDL receptor (LDLR), but lack known function. We generated single amino acid substitutions of LRP6-LDLR repeat residues, which are highly conserved in the human LDLR and mutated in patients with Familial Hypercholesteremia (FH). These substitutions negatively impacted LRP6 internalization and activation of Wnt signaling. By mass spectrometry, we observed that the Itch E3 ubiquitin ligase associated with and ubiquitinated wild type LRP6 but not the LDLR repeat mutants. These findings establish the involvement of LRP6-LDLR repeats in the regulation of canonical Wnt signaling.


Pertussis toxin-sensitive heterotrimeric G(αi/o) proteins mediate WNT/β-catenin and WNT/ERK1/2 signaling in mouse primary microglia stimulated with purified WNT-3A.

  • Carina Halleskog‎ et al.
  • Cellular signalling‎
  • 2013‎

WNT-3A is a secreted lipoglycoprotein that engages Class Frizzled receptors and LDL receptor related protein 5/6 (LRP5/6) for cellular communication. Generally, WNT-3A mediates WNT/β-catenin signaling to regulate TCF/LEF-dependent gene expression. We have previously shown that β-catenin levels are elevated in proinflammatory microglia of Alzheimer's disease patients and that WNT-3A can evoke a strong proinflammatory response in primary microglia. In order to investigate the underlying mechanisms, we focus here on the pharmacological dissection of WNT-3A-induced signaling to β-catenin and to the extracellular signal-regulated kinases 1/2 (ERK1/2) in mouse primary microglia. Both pathways are induced by WNT-3A with slightly different kinetics, suggesting that they might be pharmacologically separable. Inhibition of heterotrimeric Gαi/o proteins by pertussis toxin blocks WNT-3A-induced LRP6 phosphorylation, disheveled shift, β-catenin stabilization and phosphorylation of ERK1/2. On the other hand LRP6 blockade by Dickkopf 1 treatment abrogated the WNT/β-catenin pathway without affecting WNT/ERK1/2 signaling. In the opposite way, inhibition of βγ subunits, phospholipase C (PLC), intracellular calcium and MEK1/2, the upstream kinase of ERK1/2, blocked ERK1/2 phosphorylation but not β-catenin stabilization. In summary, the data suggest a central role of Gαi/o for both β-catenin-dependent and -independent pathways. WNT-3A-induced ERK1/2 phosphorylation is mediated by βγ subunits, PLC, intracellular calcium and MEK1/2. Furthermore, we show that cyclooxygenase 2 (COX2), a generic proinflammatory marker of microglia, is induced by WNT-3A through ERK1/2-dependent pathways arguing that β-catenin-independent signaling downstream of WNT-3A is of physiological importance for the proinflammatory regulation of microglia.


Dietary-Induced Elevations of Triglyceride-Rich Lipoproteins Promote Atherosclerosis in the Low-Density Lipoprotein Receptor Knockout Syrian Golden Hamster.

  • Xiao Lin‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Elevated triglycerides are associated with an increased risk of cardiovascular disease (CVD). Therefore, it is very important to understand the metabolism of triglyceride-rich lipoproteins (TRLs) and their atherogenic role in animal models. Using low-density lipoprotein receptor knockout (LDLR-/-) Syrian golden hamsters, this study showed that unlike LDLR-/- mice, when LDLR-/- hamsters were fed a high cholesterol high-fat diet (HFD), they had very high plasma levels of triglycerides and cholesterol. We found that LDLR-/- hamsters exhibited increased serum TRLs and the ApoB100 and 48 in these particles after being fed with HFD. Treatment with ezetimibe for 2 weeks decreased these large particles but not the LDL. In addition, ezetimibe simultaneously reduced ApoB48 and ApoE in plasma and TRLs. The expression of LRP1 did not change in the liver. These findings suggested that the significantly reduced large particles were mainly chylomicron remnants, and further, the remnants were mainly cleared by the LDL receptor in hamsters. After 40 days on an HFD, LDLR-/- hamsters had accelerated aortic atherosclerosis, accompanied by severe fatty liver, and ezetimibe treatment reduced the consequences of hyperlipidemia. Compared with the serum from LDLR-/- hamsters, that from ezetimibe-treated LDLR-/- hamsters decreased the expression of vascular adhesion factors in vascular endothelial cells and lipid uptake by macrophages. Our results suggested that in the LDLR-/- hamster model, intestinally-derived lipoprotein remnants are highly atherogenic and the inflammatory response of the endothelium and foam cells from macrophages triggered atherosclerosis. The LDL receptor might be very important for chylomicrons remnant clearance in the Syrian golden hamster, and this may not be compensated by another pathway. We suggest that the LDLR-/- hamster is a good model for the study of TRLs-related diseases as it mimics more complex hyperlipidemia.


High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke.

  • Hanna Markstad‎ et al.
  • Journal of the American Heart Association‎
  • 2019‎

Background When the lectinlike oxidized low-density lipoprotein (ox LDL) receptor-1 ( LOX -1), a scavenger receptor for ox LDL , binds ox LDL , processes leading to endothelial dysfunction and inflammation are promoted. We aimed to study release mechanisms of LOX -1 and how circulating levels of soluble LOX -1 ( sLOX -1) relate to plaque inflammation and future risk for ischemic stroke. Methods and Results Endothelial cells and leukocytes were used to study release of sLOX -1. Plasma levels of sLOX -1 were determined in 4703 participants in the Malmö Diet and Cancer cohort. Incidence of ischemic stroke was monitored. For 202 patients undergoing carotid endarterectomy, levels of sLOX -1 were analyzed in plasma and plaque homogenates and related to plaque inflammation factors. Endothelial cells released sLOX -1 when exposed to ox LDL . A total of 257 subjects experienced stroke during a mean follow-up of 16.5 years. Subjects in the highest tertile of sLOX -1 had a stroke hazard ratio of 1.75 (95% CI, 1.28-2.39) compared with those in the lowest tertile after adjusting for age and sex. The patients undergoing carotid endarterectomy had a significant association between plasma sLOX -1 and the plaque content of sLOX -1 ( r=0.209, P=0.004). Plaques with high levels of sLOX -1 had more ox LDL , proinflammatory cytokines, and matrix metalloproteinases. Conclusions Our findings demonstrate that ox LDL induces the release of sLOX -1 from endothelial cells and that circulating levels of sLOX -1 correlate with carotid plaque inflammation and risk for ischemic stroke. These observations provide clinical support to experimental studies implicating LOX -1 in atherosclerosis and its possible role as target for cardiovascular intervention.


Localization and expression of low-density lipoprotein receptor, steroidogenic acute regulatory protein, cytochrome P450 side-chain cleavage and P450 17-alpha-hydroxylase/C17-20 lyase in developing swine follicles: in situ molecular hybridization and immunocytochemical studies.

  • J C Garmey‎ et al.
  • Molecular and cellular endocrinology‎
  • 2000‎

The present study utilizes in situ molecular hybridization and immunocytochemistry to investigate the follicular localization and expression of four thematically related sterol-metabolizing genes; low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage (CYP11A) enzyme, and cytochrome P450 17alpha-hydroxylase/C(17-20) lyase (CYP17). To this end, semiquantitative analyses were applied to individual nonatretic follicles (N=54) harvested from cycling gilts slaughtered on days 1, 3, 5, and 7 (N=3 per day) following withdrawal of the progesterone agonist, altrenogest. In situ and immunocytochemical signal intensities were assigned numerical values of 0-3 corresponding to the degree of expression of each mRNA and its corresponding protein. LDL receptor mRNA and protein content was undectable in theca and granulosa cells on days 1, 3, and 5, and then increased to low levels in theca cells on day 7. StAR message rose progressively in theca cells with follicular maturation, reaching a maximum on day 5, and then declining slightly on day 7 after the LH surge. In granulosa cells, small amounts of StAR mRNA and protein were detected on days 5 and 7. The amounts of CYP11A mRNA and protein were high in theca cells, and increased at each time point studied. Granulosa cells exhibited minimal CYP11A message on days 3, 5, and 7, while protein became detectable at low levels on day 7 only. Expression of CYP17 was localized exclusively in theca cells with protein and message content increasing unidirectionally to maxima on days 5 (RNA) and 7 (protein), respectively. Follicular fluid concentrations of androstenedione, and progesterone in contralateral ovaries correlated strongly and positively with accumulation of CYP17, and CYP11A proteins. In summary, these analyses demonstrate that preovulatory follicular development proceeds with the coordinate induction of pivotal genes and proteins that mediate the selective uptake, delivery and utilization of sterol substrate in granulosa and theca-cell steroidogenesis.


Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

  • Marko Brankatschk‎ et al.
  • eLife‎
  • 2014‎

The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.


Curcumin Derivative GT863 Inhibits Amyloid-Beta Production via Inhibition of Protein N-Glycosylation.

  • Yasuomi Urano‎ et al.
  • Cells‎
  • 2020‎

Amyloid-β (Aβ) peptides play a crucial role in the pathogenesis of Alzheimer's disease (AD). Aβ production, aggregation, and clearance are thought to be important therapeutic targets for AD. Curcumin has been known to have an anti-amyloidogenic effect on AD. In the present study, we performed screening analysis using a curcumin derivative library with the aim of finding derivatives effective in suppressing Aβ production with improved bioavailability of curcumin using CHO cells that stably express human amyloid-β precursor protein and using human neuroblastoma SH-SY5Y cells. We found that the curcumin derivative GT863/PE859, which has been shown to have an inhibitory effect on Aβ and tau aggregation in vivo, was more effective than curcumin itself in reducing Aβ secretion. We further found that GT863 inhibited neither β- nor γ-secretase activity, but did suppress γ-secretase-mediated cleavage in a substrate-dependent manner. We further found that GT863 suppressed N-linked glycosylation, including that of the γ-secretase subunit nicastrin. We also found that mannosidase inhibitors that block the mannose trimming step of N-glycosylation suppressed Aβ production in a similar fashion, as was observed as a result of treatment with GT863. Collectively, these results suggest that GT863 downregulates N-glycosylation, resulting in suppression of Aβ production without affecting secretase activity.


Intimal smooth muscle cells up-regulate beta-very low density lipoprotein-mediated cholesterol accumulation by enhancing beta-very low density lipoprotein uptake and decreasing cholesterol efflux.

  • Itsuko Ishii‎ et al.
  • Biochimica et biophysica acta‎
  • 2002‎

To clarify the mechanism of smooth muscle cell (SMC)-derived foam cell formation, we investigated beta-very low density lipoprotein (beta-VLDL) cholesterol metabolism in vascular medial SMCs (M-SMCs) from normal rabbits compared with intimal SMCs (I-SMCs) from normal rabbits fed a high-cholesterol diet and LDL receptor-deficient rabbits. For both types of I-SMCs, uptake of [3H]cholesteryl oleate labeled beta-VLDL increased 1.6 times and release of [3H]cholesterol decreased 40% compared with M-SMCs. M-SMCs took up part of the beta-VLDL through the LDL receptor but I-SMCs did not. mRNAs for the VLDL receptor and the LDL receptor relative with 11 ligand binding repeats were expressed at similar levels in all SMCs. M-SMCs expressed more LDL receptor-related protein than I-SMCs. Ligand blotting analysis revealed greater 125I-beta-VLDL binding to a 700-kDa protein in I-SMCs compared with M-SMCs. I-SMCs had higher activities of acid cholesterol esterase and acyl-CoA:cholesterol acyltransferase, and lower activity of neutral cholesterol esterase than M-SMCs in both the absence and the presence of beta-VLDL. These results indicate that I-SMCs accumulate more cholesteryl ester than M-SMCs by taking up more beta-VLDL and by effluxing less cholesterol.


Rutin attenuates Sorafenib-induced Chemoresistance and Autophagy in Hepatocellular Carcinoma by regulating BANCR/miRNA-590-5P/OLR1 Axis.

  • Meng Zhou‎ et al.
  • International journal of biological sciences‎
  • 2021‎

Rutin, the main component of Potentilla discolor Bunge, was proven to exhibit anti-tumor properties. Sorafenib (SO) is conventionally used in chemotherapy against hepatocellular carcinoma (HCC), but acquired resistance developed during long-term therapy limits its benefits. This study aimed to explore the molecular mechanism of rutin in SO-induced autophagy and chemoresistance in HCC. Sixty-eight paired HCC patients who received the same chemotherapy treatment were obtained. We also established two SO resistance cell lines and then utilized high-throughput RNA sequencing to explore their long non-coding RNA (lncRNA) expression profiles. The target microRNA (miRNA) and downstream mRNA were also explored. Our results indicated that rutin treatment attenuates autophagy and BANCR expression in SO resistance cells. Transmission electron microscopy clearly showed a significantly decreased number of autophagosomes after rutin-treated HepG2/SO and HCCLM3/SO cells. BANCR knockdown promotes the sensitivity of SO resistance cells to SO. Further study found that BANCR acts as a molecular sponge of miR-590-5P to sequester miR-590-5P away from oxidized low-density lipoprotein receptor 1 (OLR1) in HCC cells. Furthermore, in vivo study demonstrated that rutin could inhibit autophagy through the BANCR/miRNA-590-5P/OLR1 axis. Our findings suggest that rutin could regulate autophagy by regulating BANCR/miRNA-590-5P/OLR1 axis.


Lrp4 domains differentially regulate limb/brain development and synaptic plasticity.

  • Theresa Pohlkamp‎ et al.
  • PloS one‎
  • 2015‎

Apolipoprotein E (ApoE) genotype is the strongest predictor of Alzheimer's Disease (AD) risk. ApoE is a cholesterol transport protein that binds to members of the Low-Density Lipoprotein (LDL) Receptor family, which includes LDL Receptor Related Protein 4 (Lrp4). Lrp4, together with one of its ligands Agrin and its co-receptors Muscle Specific Kinase (MuSK) and Amyloid Precursor Protein (APP), regulates neuromuscular junction (NMJ) formation. All four proteins are also expressed in the adult brain, and APP, MuSK, and Agrin are required for normal synapse function in the CNS. Here, we show that Lrp4 is also required for normal hippocampal plasticity. In contrast to the closely related Lrp8/Apoer2, the intracellular domain of Lrp4 does not appear to be necessary for normal expression and maintenance of long-term potentiation at central synapses or for the formation and maintenance of peripheral NMJs. However, it does play a role in limb development.


The elevation of miR-185-5p alleviates high-fat diet-induced atherosclerosis and lipid accumulation in vivo and in vitro via SREBP2 activation.

  • Wenyun Tan‎ et al.
  • Aging‎
  • 2022‎

SREBP2, a member of the SREBP family, is a primary regulator of lipid metabolism. In recent years, an increasing number of studies have suggested that miRNAs regulate lipid metabolism-related genes. It was speculated in this study that miRNAs may be implicated in the regulation of lipid accumulation in macrophages by SREBP2 protein.


Shexiang Baoxin Pill Alleviates the Atherosclerotic Lesions in Mice via Improving Inflammation Response and Inhibiting Lipid Accumulation in the Arterial Wall.

  • Li Lu‎ et al.
  • Mediators of inflammation‎
  • 2019‎

Epidemiological studies have demonstrated that cardiovascular diseases (CVDs) are the leading cause of death in the world. Atherosclerosis, a kind of chronic vascular disorder related to multiple pathogenic processes, has been reported to be an underlying cause of CVDs. Shexiang Baoxin Pill (SBP) is a traditional Chinese medicine formulation and has been broadly used for the treatment of CVDs in East Asia. However, whether SBP affects the development of atherosclerosis is poorly understood. The aim of this study was to investigate the antiatherosclerotic roles and relevant mechanisms of SBP in apolipoprotein E knockout mice. Our results showed that SBP treatment markedly decreased the size of atherosclerotic plaques of the entire aorta and the aortic sinus. Biochemical analyses indicated that SBP gavage improved oxidative stress in vivo, as seen by the level elevation of SOD, CAT, and GSH and the level reduction of MDA, H2O2, and MPO. Moreover, the concentration of MCP-1, IFN-γ, and IL-17A was reduced, and the content of IL-10 and TGF-β1 was increased in the serum from SBP-treated mice. We discovered that the expression levels of inflammatory factors including VCAM-1, ICAM-1, IL-6, and IL-2 in the vascular wall of the SBP group were also decreased in comparison with those of the normal saline group. Moreover, we found that SBP alleviated the activation of inflammation-related pathways in the aorta tissue, as seen by the level elevation of Mfn2 and reduced phosphorylation of p38, JNK, and NF-κB. Furthermore, western blot showed that SBP administration reduced the level of SR-A and LOX-1 and elevated the content of LXRα, ABCA1, and ABCG1 in the arterial wall, indicating that SBP was capable of alleviating lipid influx and facilitating lipid efflux. In conclusion, our data suggested that SBP exerted antiatherosclerotic effects via improving inflammation response and inhibiting lipid accumulation.


Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata.

  • Md Abdullah Al Baki‎ et al.
  • BMC developmental biology‎
  • 2019‎

Insulin/insulin-like growth peptide signaling (IIS) down-regulates hemolymph sugar level and facilitates larval growth in the soybean pod borer, Maruca vitrata. The objective of this study is to determine whether IIS of M. vitrata can mediate ovarian development of adult females.


Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors.

  • Liang Schweizer‎ et al.
  • BMC cell biology‎
  • 2003‎

Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. The aminotermini of LRP and Fz were reported to associate only in the presence of Wnt, implying that Wnt ligands form a trimeric complex with two different receptors. However, it was recently reported that LRPs activate the Wnt/beta-catenin pathway by binding to Axin in a Dishevelled--independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize beta-catenin. Thus, it is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/beta-catenin pathway. The question then arises whether both receptors are absolutely required to transduce Wnt signals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: