Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 1,664 papers

DMRT1 is required for Müllerian duct formation in the chicken embryo.

  • K L Ayers‎ et al.
  • Developmental biology‎
  • 2015‎

DMRT1 is a conserved transcription factor with a central role in gonadal sex differentiation. In all vertebrates studied, DMRT1 plays an essential function in testis development and/or maintenance. No studies have reported a role for DMRT1 outside the gonads. Here, we show that DMRT1 is expressed in the paired Müllerian ducts in the chicken embryo, where it is required for duct formation. DMRT1 mRNA and protein are expressed in the early forming Müllerian ridge, and in cells undergoing an epithelial to mesenchyme transition during duct morphogenesis. RNAi-mediated knockdown of DMRT1 in ovo causes a greatly reduced mesenchymal layer, which blocks caudal extension of the duct luminal epithelium. Critical markers of Müllerian duct formation in mammals, Pax2 in the duct epithelium and Wnt4 in the mesenchyme, are conserved in chicken and their expression disrupted in DMRT1 knockdown ducts. We conclude that DMRT1 is required for the early steps of Müllerian duct development. DMRT1 regulates Müllerian ridge and mesenchyme formation and its loss blocks caudal extension of the duct. While DMRT1 plays an important role during testis development and maintenance in many vertebrate species, this is the first report showing a requirement for DMRT1 in Müllerian duct development.


Rediscovering the chick embryo as a model to study retinal development.

  • M Natalia Vergara‎ et al.
  • Neural development‎
  • 2012‎

The embryonic chick occupies a privileged place among animal models used in developmental studies. Its rapid development and accessibility for visualization and experimental manipulation are just some of the characteristics that have made it a vertebrate model of choice for more than two millennia. Until a few years ago, the inability to perform genetic manipulations constituted a major drawback of this system. However, the completion of the chicken genome project and the development of techniques to manipulate gene expression have allowed this classic animal model to enter the molecular age. Such techniques, combined with the embryological manipulations that this system is well known for, provide a unique toolkit to study the genetic basis of neural development. A major advantage of these approaches is that they permit targeted gene misexpression with extremely high spatiotemporal resolution and over a large range of developmental stages, allowing functional analysis at a level, speed and ease that is difficult to achieve in other systems. This article provides a general overview of the chick as a developmental model focusing more specifically on its application to the study of eye development. Special emphasis is given to the state of the art of the techniques that have made gene gain- and loss-of-function studies in this model a reality. In addition, we discuss some methodological considerations derived from our own experience that we believe will be beneficial to researchers working with this system.


Clinically failed eggs as a source of normal human embryo stem cells.

  • Paul A De Sousa‎ et al.
  • Stem cell research‎
  • 2009‎

The promise of human embryo stem cells (hESCs) for regenerative medicine is offset by the ethical and practical challenges involved in sourcing eggs and embryos for this objective. In this study we sought to isolate an hESC line from clinically failed eggs, the usage of which would not conflict with donor interests to conceive. A total of 8 blastocysts were allocated for hESC derivation from a pool of 579 eggs whose fertilization had been clinically assessed to have occurred abnormally (i.e., three pronuclei) or failed (i.e., no pronuclei) following in vitro insemination or intracytoplasmic sperm injection (ICSI). The latter were subjected to a recovery intervention consisting of either reinsemination by ICSI or parthenogenetic stimulation. One hESC line (RCM1) was obtained from a failed-to-fertilize inseminated egg recovered by parthenogenetic activation. Standard in vitro and in vivo characterization revealed this line to possess all of the properties attributed to a normal euploid hESC line. Whole-genome single-nucleotide polymorphism analysis further revealed that the line was biparental, indicating that sperm penetration had occurred, although parthenogenetic stimulation was required for activation. Our results demonstrate the viability of an alternative strategy to generate normal hESC lines from clinically failed eggs, thereby further minimizing the potential to conflict with donor reproductive interest to conceive.


Maternal SMCHD1 regulates Hox gene expression and patterning in the mouse embryo.

  • Natalia Benetti‎ et al.
  • Nature communications‎
  • 2022‎

Parents transmit genetic and epigenetic information to their offspring. Maternal effect genes regulate the offspring epigenome to ensure normal development. Here we report that the epigenetic regulator SMCHD1 has a maternal effect on Hox gene expression and skeletal patterning. Maternal SMCHD1, present in the oocyte and preimplantation embryo, prevents precocious activation of Hox genes post-implantation. Without maternal SMCHD1, highly penetrant posterior homeotic transformations occur in the embryo. Hox genes are decorated with Polycomb marks H2AK119ub and H3K27me3 from the oocyte throughout early embryonic development; however, loss of maternal SMCHD1 does not deplete these marks. Therefore, we propose maternal SMCHD1 acts downstream of Polycomb marks to establish a chromatin state necessary for persistent epigenetic silencing and appropriate Hox gene expression later in the developing embryo. This is a striking role for maternal SMCHD1 in long-lived epigenetic effects impacting offspring phenotype.


Semaphorin 3fa Controls Ocular Vascularization From the Embryo Through to the Adult.

  • Rami Halabi‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2021‎

Pathological blood vessel growth in the eye is implicated in several diseases that result in vision loss, including age-related macular degeneration and diabetic retinopathy. The limits of current disease therapies have created the need to identify and characterize new antiangiogenic drugs. Here, we identify the secreted chemorepellent semaphorin-3fa (Sema3fa) as an endogenous anti-angiogenic in the eye.


Pias1 is essential for erythroid and vascular development in the mouse embryo.

  • Jerfiz D Constanzo‎ et al.
  • Developmental biology‎
  • 2016‎

The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied. Here, we report that Pias1 is required for proper embryonic development. Approximately 90% of Pias1 null embryos die in utero between E10.5 and E12.5. We found significant apoptosis within the yolk sac (YS) blood vessels and concomitant loss of red blood cells (RBCs) resulting in profound anemia. In addition, Pias1 loss impairs YS angiogenesis and results in defective capillary plexus formation and blood vessel occlusions. Moreover, heart development is impaired as a result of loss of myocardium muscle mass. Accordingly, we found that Pias1 expression in primary myoblasts enhances the induction of cardiac muscle genes MyoD, Myogenin and Myomaker. PIAS1 protein regulation of cardiac gene transcription is dependent on transcription factors Myocardin and Gata-4. Finally, endothelial cell specific inactivation of Pias1 in vivo impairs YS erythrogenesis, angiogenesis and recapitulates loss of myocardium muscle mass. However, these defects are not sufficient to recapitulate the lethal phenotype of Pias1 null embryos. These findings highlight Pias1 as an essential gene for YS erythropoiesis and vasculogenesis in vivo.


CTP Synthase 2 From Arabidopsis thaliana Is Required for Complete Embryo Development.

  • Daniel Hickl‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Pyrimidine de novo synthesis is an essential pathway in all organisms. The final and rate-limiting step in the synthesis of the nucleotide cytidine triphosphate (CTP) is catalyzed by CTP synthase (CTPS), and Arabidopsis harbors five isoforms. Single mutant lines defective in each one of the four isoforms do not show apparent phenotypical alterations in comparison to wild-type plants. However, Arabidopsis lines that contain T-DNA insertions in the CTPS2 gene were unable to produce homozygous offspring. Here, we show that CTPS2 exhibits a distinct expression pattern throughout embryo development, and loss-of-function mutants are embryo lethal, as siliques from +/ctps2 plants contained nearly 25% aborted seeds. This phenotype was rescued by complementation with CTPS2 under control of its endogenous promoter. CTPS2::GFP lines revealed expression only in the tip of columella cells in embryo root tips of the heart and later stages. Furthermore, CTPS2 expression in mature roots, most pronounced in the columella cells, shoots, and vasculature tissue of young seedlings, was observed. Filial generations of +/ctps2 plants did not germinate properly, even under external cytidine supply. During embryo development, the CTPS2 expression pattern resembled the established auxin reporter DR5::GFP. Indeed, the cloned promoter region we used in this study possesses a repeat of an auxin response element, and auxin supply increased CTPS2 expression in a cell-type-specific manner. Thus, we conclude that CTPS2 is essential for CTP supply in developing embryos, and loss-of-function mutants in CTPS2 are embryo lethal.


Heparan sulfate proteoglycan specificity during axon pathway formation in the Drosophila embryo.

  • Ashley D Smart‎ et al.
  • Developmental neurobiology‎
  • 2011‎

Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.


Regeneration of the elbow joint in the developing chick embryo recapitulates development.

  • B Duygu Özpolat‎ et al.
  • Developmental biology‎
  • 2012‎

Synovial joints are among the most important structures that give us complex motor abilities as humans. Degenerative joint diseases, such as arthritis, cause loss of normal joint functioning and affect over 40 million people in the USA and approximately 350 million people worldwide. Therapies based on regenerative medicine hold the promise of effectively repairing or replacing damaged joints permanently. Here, for the first time, we introduce a model for synovial joint regeneration utilizing the chick embryo. In this model, a block of tissue that contains the prospective elbow is excised, leaving a window with strips of anterior and posterior tissue intact (window excision, WE). In contrast, we also slice out the same area containing the elbow and the distal piece of the limb is pinned back onto the stump (slice excision, SE). Interestingly, when the elbow is removed via WE, regeneration of the joint takes place, whereas the elbow joint does not regenerate following SE. In order to investigate whether the regeneration response recapitulates the developmental program of forming joints, we used GDF-5 and Autotaxin (Atx) as joint tissue specific markers, and Sox-9 and Col-9 as cartilage markers for in situ hybridization on sections at different time points after WE and SE surgeries. Re-expression of GDF-5 and Atx is observed in the WE samples by 60h after surgery. In contrast, the majority of the samples that underwent SE surgery did not express GDF-5 and Atx. Also, in SE fusion of cartilage elements takes place and the joint interzone does not form. This is indicated by continuous Col-9 expression in SE limbs, whereas Col-9 is downregulated at the joint interzone in the regenerating WE samples. This order and pattern of gene expression observed in regenerates is similar to the development of a joint suggesting that regeneration recapitulates development at the molecular level. This model defines some of the conditions required for inducing joint regeneration in an otherwise nonregenerating environment. This knowledge can be useful for designing new therapeutic approaches for joint loss or for conditions affecting joint integrity in humans.


Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

  • Lisa Deignan‎ et al.
  • PLoS genetics‎
  • 2016‎

The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates.


Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo.

  • Amy N Hicks‎ et al.
  • PloS one‎
  • 2012‎

Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder). Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2). Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad) mutants. Examination of the brains of E18.5 Nmnat2(blad/blad) mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad) homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG). In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle) are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.


BMP is an important regulator of proepicardial identity in the chick embryo.

  • Jan Schlueter‎ et al.
  • Developmental biology‎
  • 2006‎

The proepicardium (PE) is a transient structure formed by pericardial coelomic mesothelium at the venous pole of the embryonic heart and gives rise to several cell types of the mature heart. In order to study PE development in chick embryos, we have analyzed the expression pattern of the marker genes Tbx18, Wt1, and Cfc. During PE induction, the three marker genes displayed a left-right asymmetric expression pattern. In each case, expression on the right side was stronger than on the left side. The left-right asymmetric gene expression observed here is in accord with the asymmetric formation of the proepicardium in the chick embryo. While initially the marker genes were expressed in the primitive sinus horn, subsequently, expression became confined to the PE mesothelium. In order to search for signaling factors involved in PE development, we studied Bmp2 and Bmp4 expression. Bmp2 was bilaterally expressed in the sinus venosus. In contrast, Bmp4 expression was initially expressed unilaterally in the right sinus horn and subsequently in the PE. In order to assess its functional role, BMP signaling was experimentally modulated by supplying exogenous BMP2 and by inhibiting endogenous BMP signaling through the addition of Noggin. Both supplying BMP and blocking BMP signaling resulted in a loss of PE marker gene expression. Surprisingly, both experimental situations lead to cardiac myocyte formation in the PE cultures. Careful titration experiments with exogenously added BMP2 or Noggin revealed that PE-specific marker gene expression depends on a low level of BMP signaling. Implantation of BMP2-secreting cells or beads filled with Noggin protein into the right sinus horn of HH stage 11 embryos resulted in downregulation of Tbx18 expression, corresponding to the results of the explant assay. Thus, a distinct level of BMP signaling is required for PE formation in the chick embryo.


Archiving and distributing mouse lines by sperm cryopreservation, IVF, and embryo transfer.

  • Hideko Takahashi‎ et al.
  • Methods in enzymology‎
  • 2010‎

The number of genetically modified mouse lines has been increasing exponentially in the past few decades. In order to safeguard them from accidental loss and genetic drifting, to reduce animal housing cost, and to efficiently distribute them around the world, it is important to cryopreserve these valuable genetic resources. Preimplantation-stage embryos from thousands of mouse lines have been cryopreserved during the past two to three decades. Although reliable, this method requires several hundreds of embryos, which demands a sizable breeding colony, to safely preserve each line. This requirement imposes significant delay and financial burden for the archiving effort. Sperm cryopreservation is now emerging as the leading method for storing and distributing mouse lines, largely due to the recent finding that addition of a reducing agent, monothioglycerol, into the cryoprotectant can significantly increase the in vitro fertilization (IVF) rate in many mouse strains, including the most widely used C57BL/6 strain. This method is quick, inexpensive, and requires only two breeding age male mice, but it still remains tricky and strain-dependent. A small change in experimental conditions can lead to significant variations in the outcome. In this chapter, we describe in detail our sperm cryopreservation, IVF, and oviduct transfer procedures for storing and reviving genetically modified mouse lines.


Targeting neovascularization and respiration of tumor grafts grown on chick embryo chorioallantoic membranes.

  • Hyrije Ademi‎ et al.
  • PloS one‎
  • 2021‎

Since growing tumors stimulate angiogenesis, via vascular endothelial growth factor (VEGF), angiogenesis inhibitors (AIs, blockers of the VEGF signaling pathway) have been introduced to cancer therapy. However, AIs often yielded only modest and short-lived gains in cancer patients and more invasive tumor phenotypes in animal models. Combining anti-VEGF strategies with lactate uptake blockers may boost both efficacy and safety of AIs. We assessed this hypothesis by using the ex ovo chorioallantoic membrane (CAM) assay. We show that AI-based monotherapy (Avastin®, AVA) increases tumor hypoxia in human CAM cancer cell xenografts and cell spread in human as well as canine CAM cancer cell xenografts. In contrast, combining AVA treatment with lactate importer MCT1 inhibitors (α-cyano-4-hydroxycinnamic acid (CHC) or AZD3965 (AZD)) reduced both tumor growth and cell dissemination of human and canine explants. Moreover, combining AVA+AZD diminished blood perfusion and tumor hypoxia in human explants. Thus, the ex ovo CAM assay as an easy, fast and cheap experimental setup is useful for pre-clinical cancer research. Moreover, as an animal-free experimental setup the CAM assay can reduce the high number of laboratory animals used in pre-clinical cancer research.


Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo.

  • Heidi Bildsoe‎ et al.
  • Developmental biology‎
  • 2009‎

Using a Cre-mediated conditional deletion approach, we have dissected the function of Twist1 in the morphogenesis of the craniofacial skeleton. Loss of Twist1 in neural crest cells and their derivatives impairs skeletogenic differentiation and leads to the loss of bones of the snout, upper face and skull vault. While no anatomically recognizable maxilla is formed, a malformed mandible is present. Since Twist1 is expressed in the tissues of the maxillary eminence and the mandibular arch, this finding suggests that the requirement for Twist1 is not the same in all neural crest derivatives. The effect of the loss of Twist1 function is not restricted to neural crest-derived bones, since the predominantly mesoderm-derived parietal and interparietal bones are also affected, presumably as a consequence of lost interactions with neural crest-derived tissues. In contrast, the formation of other mesodermal skeletal derivatives such as the occipital bones and most of the chondrocranium are not affected by the loss of Twist1 in the neural crest cells.


MiR-183 impeded embryo implantation by regulating Hbegf and Lamc1 in mouse uterus.

  • Dingren Cao‎ et al.
  • Theriogenology‎
  • 2020‎

Embryo implantation plays a decisive role in pregnancy. While in the process of implantation, microRNA (miRNA) is an important regulatory factor in the post transcriptional level. However, the role of many miRNAs in embryo implantation remained unknown. In this study, microRNA-183 (miR-183) was found differentially expressed in mouse uterus during implantation. In vivo treatment of miR-183 agomir in the uterine horn before implantation could eliminate the number of implantation site. The localization of miR-183 in mouse uteri gradually changed from epithelial to stromal layer in early pregnancy. Mice implantation models demonstrated that the decrease of miR-183 was mainly caused by maternal factors. Loss and gain function of miR-183 in endometrial cell lines showed that miR-183 could inhibit cell migration, invasion and apoptosis. MiR-183 could inhibit embryo implantation by binding Heparin-Binding EGF-like growth factor (Hbegf) and Laminin gamma one (Lamc1), which were key genes in embryo apposition and penetration. All these evidences indicate that miR-183 plays an important role during embryo implantation. This study provides new insights into the functions of miR-183 during embryo implantation and the development of contraceptive drugs in early pregnancy.


FOXO1 regulates uterine epithelial integrity and progesterone receptor expression critical for embryo implantation.

  • Yasmin M Vasquez‎ et al.
  • PLoS genetics‎
  • 2018‎

Successful embryo implantation requires a receptive endometrium. Poor uterine receptivity can account for implantation failure in women who experience recurrent pregnancy loss or multiple rounds of unsuccessful in vitro fertilization cycles. Here, we demonstrate that the transcription factor Forkhead Box O1 (FOXO1) is a critical regulator of endometrial receptivity in vivo. Uterine ablation of Foxo1 using the progesterone receptor Cre (PgrCre) mouse model resulted in infertility due to altered epithelial cell polarity and apoptosis, preventing the embryo from penetrating the luminal epithelium. Analysis of the uterine transcriptome after Foxo1 ablation identified alterations in gene expression for transcripts involved in the activation of cell invasion, molecular transport, apoptosis, β-catenin (CTNNB1) signaling pathway, and an increase in PGR signaling. The increase of PGR signaling was due to PGR expression being retained in the uterine epithelium during the window of receptivity. Constitutive expression of epithelial PGR during this receptive period inhibited expression of FOXO1 in the nucleus of the uterine epithelium. The reciprocal expression of PGR and FOXO1 was conserved in human endometrial samples during the proliferative and secretory phase. This demonstrates that expression of FOXO1 and the loss of PGR during the window of receptivity are interrelated and critical for embryo implantation.


Morphogenesis of extra-embryonic tissues directs the remodelling of the mouse embryo at implantation.

  • Neophytos Christodoulou‎ et al.
  • Nature communications‎
  • 2019‎

Mammalian embryos change shape dramatically upon implantation. The cellular and molecular mechanism underlying this transition are largely unknown. Here, we show that this transition is directed by cross talk between the embryonic epiblast and the first extra-embryonic tissue, the trophectoderm. Specifically, we show via visualisation of a Cdx2-GFP reporter line and pharmacologically mediated loss and gain of function experiments that the epiblast provides FGF signal that results in differential fate acquisition in the multipotent trophectoderm leading to the formation of a tissue boundary within this tissue. The trophectoderm boundary becomes essential for expansion of the tissue into a multi-layered epithelium. Folding of this multi-layered trophectoderm induces spreading of the second extra-embryonic tissue, the primitive endoderm. Together, these events remodel the pre-implantation embryo into its post-implantation cylindrical shape. Our findings uncover how communication between embryonic and extra-embryonic tissues provides positional cues to drive shape changes in mammalian development during implantation.


Stromal Pbrm1 mediates chromatin remodeling necessary for embryo implantation in the mouse uterus.

  • Qiliang Xin‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

Early gestational loss occurs in approximately 20% of all clinically recognized human pregnancies and is an important cause of morbidity. Either embryonic or maternal defects can cause loss, but a functioning and receptive uterine endometrium is crucial for embryo implantation. We report that the switch/sucrose nonfermentable (SWI/SNF) remodeling complex containing polybromo-1 (PBRM1) and Brahma-related gene 1 (BRG1) is essential for implantation of the embryonic blastocyst on the wall of the uterus in mice. Although preimplantation development is unaffected, conditional ablation of Pbrm1 in uterine stromal cells disrupts progesterone pathways and uterine receptivity. Heart and neural crest derivatives expressed 2 (Hand2) encodes a basic helix-loop-helix (bHLH) transcription factor required for embryo implantation. We identify an enhancer of the Hand2 gene in stromal cells that requires PBRM1 for epigenetic histone modifications/coactivator recruitment and looping with the promoter. In Pbrm1cKO mice, perturbation of chromatin assembly at the promoter and enhancer sites compromises Hand2 transcription, adversely affects fibroblast growth factor signaling pathways, prevents normal stromal-epithelial crosstalk, and disrupts embryo implantation. The mutant female mice are infertile and provide insight into potential causes of early pregnancy loss in humans.


Positive and negative regulation of Gli activity by Kif7 in the zebrafish embryo.

  • Ashish Kumar Maurya‎ et al.
  • PLoS genetics‎
  • 2013‎

Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: