Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 811 papers

In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.

  • Nicolas A Alba‎ et al.
  • Biosensors‎
  • 2015‎

Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating's charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.


Electrochemical Sensor for Tryptophan Determination Based on Trimetallic-CuZnCo-Nanoparticle-Modified Electrodes.

  • Adina Arvinte‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

The superior properties of electrodeposited trimetallic CuZnCo nanoparticles, arising from the synergistic effect of combining the unique features of metallic components, were confirmed using voltametric measurements. The surface morphology and structure of the as-prepared electrocatalysts were determined using scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy techniques. Here, the trimetallic CuZnCo nanoparticles were synthesized as a powerful redox probe and highly efficient signal amplifier for the electrochemical oxidation of tryptophan. Differential pulse voltammetry studies showed a linear relationship with a tryptophan concentration of 5-230 μM, and the low detection limit was identified at 1.1 μM with a sensitivity of 0.1831 μA μM-1 cm-2.


3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes.

  • Habdias A Silva-Neto‎ et al.
  • Mikrochimica acta‎
  • 2022‎

The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their integration was based on a threadable assembling without commercial component requirements. Printed electrodes were exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemical impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast heterogeneous rate constants ((1.5 ± 0.1) × 10-3 cm s-1). Operational parameters of BIA cell were optimized using a redox probe composed of [Fe(CN)6]4-/3- under stirring and the best analytical performance was achieved using a dispensing rate of 9.0 µL s-1 and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), linear concentration range (5 to 40 µmol L-1; R2 = 0.99), limit of detection (0.61 µmol L-1), and high analytical frequency (494 ± 13 h-1). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.


Biomolecules and Electrochemical Tools in Chronic Non-Communicable Disease Surveillance: A Systematic Review.

  • Ana Lúcia Morais‎ et al.
  • Biosensors‎
  • 2020‎

Over recent three decades, the electrochemical techniques have become widely used in biological identification and detection, because it presents optimum features for efficient and sensitive molecular detection of organic compounds, being able to trace quantities with a minimum of reagents and sample manipulation. Given these special features, electrochemical techniques are regularly exploited in disease diagnosis and monitoring. Specifically, amperometric electrochemical analysis has proven to be quite suitable for the detection of physiological biomarkers in monitoring health conditions, as well as toward the control of reactive oxygen species released in the course of oxidative burst during inflammatory events. Besides, electrochemical detection techniques involve a simple and swift assessment that provides a low detection-limit for most of the molecules enclosed biological fluids and related to non-transmittable morbidities.


POISED-5, a portable on-board electrochemical impedance spectroscopy biomarker analysis device.

  • M Anne Sawhney‎ et al.
  • Biomedical microdevices‎
  • 2019‎

Point-of-care medical devices offer the potential for rapid biomarker detection and reporting of medical conditions, thereby bypassing the requirements for offline clinical laboratory facilities in many cases. Label-free electrochemical techniques are suitable for use in handheld diagnostic devices due the inherent electronic detection modality and low requirement for processing reagents. While electrochemical impedance sensing is widely used in tissue analysis such as body composition measurement, its use in point-of-care patient testing is yet to be widely adopted. Here we have considered a number of issues currently limiting the translation of electrochemical impedance sensing into clinical biosensor devices. Specifically, we have addressed the current requirement for these sensors to be connected to an external processor by applying a minimum number of frequencies required for optimized biomarker detection, and subsequently delivering analytics within the measurement device. The POISED-5 device was evaluated using a sensor for the ovarian cancer biomarker cancer antigen 125 (CA125), demonstrating performance comparable to standard laboratory equipment, with direct interpretation of response signal amplitude substituting traditional impedance component calculation and model fitting.


Non-invasive platform to estimate fasting blood glucose levels from salivary electrochemical parameters.

  • Sarul Malik‎ et al.
  • Healthcare technology letters‎
  • 2019‎

Diabetes is a metabolic disorder that affects more than 400 million people worldwide. Most existing approaches for measuring fasting blood glucose levels (FBGLs) are invasive. This work presents a proof-of-concept study in which saliva is used as a proxy biofluid to estimate FBGL. Saliva collected from 175 volunteers was analysed using portable, handheld sensors to measure its electrochemical properties such as conductivity, redox potential, pH and K+, Na+ and Ca2+ ionic concentrations. These data, along with the person's gender and age, were trained and tested after casewise annotation with their true FBGL values using a set of mathematical algorithms. An accuracy of 87.4 ± 1.7% and a mean relative deviation of 14.1% (R 2 = 0.76) was achieved using a mathematical algorithm. All parameters except the gender were found to play a key role in the FBGL determination process. Finally, the individual electrochemical sensors were integrated into a single platform and interfaced with the authors' algorithm through a simple graphical user interface. The system was revalidated on 60 new saliva samples and gave an accuracy of 81.67 ± 2.53% (R 2 = 0.71). This study paves the way for rapid, efficient and painless FBGL estimation from saliva.


Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching.

  • Yeongseon Jang‎ et al.
  • ACS biomaterials science & engineering‎
  • 2018‎

Bacterial adhesion to stainless steel 316L (SS316L), which is an alloy typically used in many medical devices and food processing equipment, can cause serious infections along with substantial healthcare costs. This work demonstrates that nanotextured SS316L surfaces produced by electrochemical etching effectively inhibit bacterial adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, but exhibit cytocompatibility and no toxicity toward mammalian cells in vitro. Additionally, the electrochemical surface modification on SS316L results in formation of superior passive layer at the surface, improving corrosion resistance. The nanotextured SS316L offers significant potential for medical applications based on the surface structure-induced reduction of bacterial adhesion without use of antibiotic or chemical modifications while providing cytocompatibility and corrosion resistance in physiological conditions.


An electrochemical biosensor for the rapid genetic identification of Musang King durian.

  • Mohammad Malek Faizal Azizi‎ et al.
  • Scientific reports‎
  • 2022‎

More than 200 different cultivars of durian exist worldwide but Durio zibethinus or Musang King (MK) is the most premium and prized durian fruit among the recommended varieties. Early identification of this premium variety is critical to protect from non-authentic MK durian cultivars. However, the MK variety's morphological traits are nearly identical to other varieties. Currently, the identification of durian varieties is mostly performed via evaluation of leaf shape, fruit shape, aroma, taste and seed shape and this requires trained personnel for the morphology observation. To enable the rapid identification of the MK variety, PCR amplification of ten durian varieties using six gene candidates from the chloroplast genome was first performed to obtain DNA probes that were specific to the MK durian variety. PCR amplification of ten durian varieties using primers designed confirmed that the nadhA gene sequence showed an obvious difference in the MK variety from other durian varieties. The unique sequence of MK was used as a DNA probe to develop an electrochemical biosensor for the direct identification of the MK durian variety. The electrochemical biosensor was based on the hybridization response of the immobilized DNA probe with the target DNA from the MK variety and was monitored via differential pulse voltammetry technique. Under optimal conditions, the DNA electrochemical biosensor showed a low detection limit at 10% of MK genomic DNA concentration with a wide linear calibration range of 0.05-1.5 µM (R2 = 0.9891) and RSD value of 3.77% (n = 3). The results of the developed DNA biosensor provide high promise for the development of portable sensors employed in the determination of MK variety in the field.


Electrochemical Sensing of Dopamine Using Polypyrrole/Molybdenum Oxide Bilayer-Modified ITO Electrode.

  • Nadiyah Alahmadi‎ et al.
  • Biosensors‎
  • 2023‎

The electrochemical sensing of biomarkers has attracted more and more attention due to the advantages of electrochemical biosensors, including their ease of use, excellent accuracy, and small analyte volumes. Thus, the electrochemical sensing of biomarkers has a potential application in early disease diagnosis diagnosis. Dopamine neurotransmitters have a vital role in the transmission of nerve impulses. Here, the fabrication of a polypyrrole/molybdenum dioxide nanoparticle (MoO3 NP)-modified ITO electrode based on a hydrothermal technique followed by electrochemical polymerization is reported. Several techniques were used to investigate the developed electrode's structure, morphology, and physical characteristics, including SEM, FTIR, EDX, N2 adsorption, and Raman spectroscopy. The results imply the formation of tiny MoO3 NPs with an average diameter of 29.01 nm. The developed electrode was used to determine low concentrations of dopamine neurotransmitters based on cyclic voltammetry and square wave voltammetry techniques. Furthermore, the developed electrode was used for monitoring dopamine in a human serum sample. The LOD for detecting dopamine by using MoO3 NPs/ITO electrodes based on the SWV technique was around 2.2 nmol L-1.


Enhanced Electrochemical Response of Diclofenac at a Fullerene⁻Carbon Nanofiber Paste Electrode.

  • Sorina Motoc‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

The requirements of the Water Framework Directive to monitor diclofenac (DCF) concentration in surface water impose the need to find advanced fast and simple analysis methods. Direct voltammetric/amperometric methods could represent efficient and practical solutions. Fullerene⁻carbon nanofibers in paraffin oil as a paste electrode (F⁻CNF) was easily obtained by simple mixing and tested for DCF detection using voltammetric and amperometric techniques. The lowest limit of detection of 0.9 nM was achieved by applying square-wave voltammetry operated under step potential (SP) of 2 mV, modulation amplitude (MA) of 10 mV, and frequency of 25 Hz, and the best sensitivity was achieved by four-level multiple pulsed amperometry (MPA) that allowed in situ reactivation of the F⁻CNF electrode. The selection of the method must take into account the environmental quality standard (EQS), imposed through the "watchlist" of the Water Framework Directive as 0.1 µg·L-1 DCF. A good improvement of the electroanalytical parameters for DCF detection on the F⁻CNF electrode was achieved by applying the preconcentration step for 30 min before the detection step, which assured about 30 times better sensitivity, recommending its application for the monitoring of trace levels of DCF. The electrochemical behavior of F⁻CNF as a pseudomicroelectrode array makes it suitable for practical application in the in situ and real-time monitoring of DCF concentrations in water.


Advanced Solid State Nano-Electrochemical Sensors and System for Agri 4.0 Applications.

  • Ian Seymour‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2021‎

Global food production needs to increase in order to meet the demands of an ever growing global population. As resources are finite, the most feasible way to meet this demand is to minimize losses and improve efficiency. Regular monitoring of factors like animal health, soil and water quality for example, can ensure that the resources are being used to their maximum efficiency. Existing monitoring techniques however have limitations, such as portability, turnaround time and requirement for additional reagents. In this work, we explore the use of micro- and nano-scale electrode devices, for the development of an electrochemical sensing platform to digitalize a wide range of applications within the agri-food sector. With this platform, we demonstrate the direct electrochemical detection of pesticides, specifically clothianidin and imidacloprid, with detection limits of 0.22 ng/mL and 2.14 ng/mL respectively, and nitrates with a detection limit of 0.2 µM. In addition, interdigitated electrode structures also enable an in-situ pH control technique to mitigate pH as an interference and modify analyte response. This technique is applied to the analysis of monochloramine, a common water disinfectant. Concerning biosensing, the sensors are modified with bio-molecular probes for the detection of both bovine viral diarrhea virus species and antibodies, over a range of 1 ng/mL to 10 µg/mL. Finally, a portable analogue front end electronic reader is developed to allow portable sensing, with control and readout undertaken using a smart phone application. Finally, the sensor chip platform is integrated with these electronics to provide a fully functional end-to-end smart sensor system compatible with emerging Agri-Food digital decision support tools.


Carboxybetaine Modified Interface for Electrochemical Glycoprofiling of Antibodies Isolated from Human Serum.

  • Tomas Bertok‎ et al.
  • Langmuir : the ACS journal of surfaces and colloids‎
  • 2015‎

Impedimetric lectin biosensors capable of recognizing two different carbohydrates (galactose and sialic acid) in glycans attached to antibodies isolated from human serum were prepared. The first step entailed the modification of a gold surface by a self-assembled monolayer (SAM) deposited from a solution containing a carboxybetaine-terminated thiol applied to the subsequent covalent immobilization of lectins and to resist nonspecific protein adsorption. In the next step, Sambucus nigra agglutinin (SNA) or Ricinus communis agglutinin (RCA) was covalently attached to the SAM, and the whole process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques including electrochemical impedance spectroscopy, cyclic voltammetry, quartz crystal microbalance, contact angle measurements, zeta-potential assays, X-ray photoelectron spectroscopy, and atomic force microscopy. In addition, the application of the SNA-based lectin biosensor in the glycoprofiling of antibodies isolated from the human sera of healthy individuals and of patients suffering from rheumatoid arthritis (RA) was successfully validated using an SNA-based lectin microarray. The results showed that the SNA lectin, in particular, is capable of discriminating between the antibodies isolated from healthy individuals and those from RA patients based on changes in the amount of sialic acid present in the antibodies. In addition, the results obtained by the application of RCA and SNA biosensors indicate that the abundance of galactose and sialic acid in antibodies isolated from healthy individuals is age-related.


Multi-scale morphology characterization of hierarchically porous silver foam electrodes for electrochemical CO2 reduction.

  • Hendrik Hoffmann‎ et al.
  • Communications chemistry‎
  • 2023‎

Ag catalysts show high selectivities in the conversion of carbon dioxide to carbon monoxide during the electrochemical carbon dioxide reduction reaction (CO2RR). Indeed, highly catalytically active porous electrodes with increased surface area achieve faradaic conversion efficiencies close to 100%. To establish reliable structure-property relationships, the results of qualitative structural analysis need to be complemented by a more quantitative approach to assess the overall picture. In this paper, we present a combination of suitable methods to characterize foam electrodes, which were synthesised by the Dynamic Hydrogen Bubble Templation (DHBT) approach to be used for the CO2RR. Physicochemical and microscopic techniques in conjunction with electrochemical analyses provide insight into the structure of the carefully tailored electrodes. By elucidating the morphology, we were able to link the electrochemical deposition at higher current densities to a more homogenous and dense structure and hence, achieve a better performance in the conversion of CO2 to valuable products.


Local Substrate Heterogeneity Influences Electrochemical Activity of TEM Grid-Supported Battery Particles.

  • Christina Cashen‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

Understanding how particle size and morphology influence ion insertion dynamics is critical for a wide range of electrochemical applications including energy storage and electrochromic smart windows. One strategy to reveal such structure-property relationships is to perform ex situ transmission electron microscopy (TEM) of nanoparticles that have been cycled on TEM grid electrodes. One drawback of this approach is that images of some particles are correlated with the electrochemical response of the entire TEM grid electrode. The lack of one-to-one electrochemical-to-structural information complicates interpretation of genuine structure/property relationships. Developing high-throughput ex situ single particle-level analytical techniques that effectively link electrochemical behavior with structural properties could accelerate the discovery of critical structure-property relationships. Here, using Li-ion insertion in WO3 nanorods as a model system, we demonstrate a correlated optically-detected electrochemistry and TEM technique that measures electrochemical behavior of via many particles simultaneously without having to make electrical contacts to single particles on the TEM grid. This correlated optical-TEM approach can link particle structure with electrochemical behavior at the single particle-level. Our measurements revealed significant electrochemical activity heterogeneity among particles. Single particle activity correlated with distinct local mechanical or electrical properties of the amorphous carbon film of the TEM grid, leading to active and inactive particles. The results are significant for correlated electrochemical/TEM imaging studies that aim to reveal structure-property relationships using single particle-level imaging and ensemble-level electrochemistry.


Electrochemical Determination of Dexamethasone by Graphene Modified Electrode: Experimental and Theoretical Investigations.

  • Somayeh Alimohammadi‎ et al.
  • Scientific reports‎
  • 2019‎

We report on a combined experimental and theoretical study concerning the electrochemical behavior of the dexamethasone (DEX) on a graphene modified glassy carbon electrode (GCE). A good agreement between experiments and density functional theory (DFT)-based calculations is observed for the DEX reduction. The electrochemical behavior of the DEX was investigated on the surface of a glassy carbon electrode (GCE) modified with different type of graphenes, including graphene quantum dot (GQD), graphene oxide (GO), electrochemically synthesized graphene (EG), graphene synthesized by the Hummer method (HG) and graphene nanoplate (GNP) using voltammetric techniques (CV, DPV and SWV). The results exhibited a significant increase in the reduction of the peak current of the DEX in  the GNP modified GCE (GNP/GCE) in comparison to other modified electrodes and bare GCE. The unique morphology, size and electro catalytic properties of the GNP cause a sensitive response of the DEX in a novel sensor. Under the optimized experimental condition, the GNP/ GCE showed two linear dynamic ranges of 0.1-50 μM and 50-5000 μM with a low detection limit of 15 nM for determination of the DEX. The novel sensor is successfully applied to the sensitive determination of the DEX in human plasma samples with satisfactory recoveries. Energy of the LUMO and HUMO orbitals and energy calculations for the DEX molecule interacting with graphene were performed using the density functional B3LYP/6-31G. The theoretical results allied to significant charge transfer took place due to the interaction of the DEX with the applied graphene.


Reduction in energy for electrochemical disinfection of E. coli in urine simulant.

  • Akshay S Raut‎ et al.
  • Journal of applied electrochemistry‎
  • 2019‎

We report the development of novel modes of operation for electrochemical disinfection of E. coli in human urine simulant with an aim to minimize the energy required for disinfection. The system employs boron-doped diamond electrodes and will be part of an energy neutral, water and additive free outdoor toilet being developed for use in developing countries. Disinfection had been previously demonstrated with voltage being continuously applied to the electrode until disinfection was achieved. In the present study, a new pulsed mode of operation is investigated. This includes a continuous on mode, where oxidants are generated until disinfection is achieved, a single cycle mode, where oxidants are generated for a fixed time and the water is circulated so allow already generated oxidants to disinfect, and a pulsed mode with different duty cycles, which is like the single cycle mode but with multiple cycles. Disinfection was achieved with pulsed mode operation with a 68% energy reduction compared to the continuous on mode. Energy saving was most likely achieved by lengthening the contact time of the disinfectant with the bacteria and increased generation of non-chlorine disinfecting oxidants.


Luminescence and Electrochemical Activity of New Unsymmetrical 3-Imino-1,8-naphthalimide Derivatives.

  • Sonia Kotowicz‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2021‎

A new series of 1,8-naphtalimides containing an imine bond at the 3-position of the naphthalene ring was synthesized using 1H, 13C NMR, FTIR, and elementary analysis. The impact of the substituent in the imine linkage on the selected properties and bioimaging of the synthesized compounds was studied. They showed a melting temperature in the range of 120-164 °C and underwent thermal decomposition above 280 °C. Based on cyclic and differential pulse voltammetry, the electrochemical behavior of 1,8-naphtalimide derivatives was evaluated. The electrochemical reduction and oxidation processes were observed. The compounds were characterized by a low energy band gap (below 2.60 eV). Their photoluminescence activities were investigated in solution considering the solvent effect, in the aggregated and thin film, and a mixture of poly(N-vinylcarbazole) (PVK) and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazole (PBD) (50:50 wt.%). They demonstrated low emissions due to photoinduced electron transport (PET) occurring in the solution and aggregation, which caused photoluminescence quenching. Some of them exhibited light emission as thin films. They emitted light in the range of 495 to 535 nm, with photoluminescence quantum yield at 4%. Despite the significant overlapping of its absorption range with emission of the PVK:PBD, incomplete Förster energy transfer from the matrix to the luminophore was found. Moreover, its luminescence ability induced by external voltage was tested in the diode with guest-host configuration. The possibility of compound hydrolysis due to the presence of the imine bond was also discussed, which could be of importance in biological studies that evaluate 3-imino-1,8-naphatalimides as imaging tools and fluorescent materials for diagnostic applications and molecular bioimaging.


Electrochemical Determination of Nicotine in Tobacco Products Based on Biosynthesized Gold Nanoparticles.

  • Yanqiu Jing‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

In this work, gold nanoparticles were biosynthesized via Plectranthus amboinicus leaf extract as the reducing agent. A series of techniques were used for sample analysis. The biosynthesized gold nanoparticles (bAuNPs) are a uniform size with a spherical shape. The FTIR analysis reveals the presence of many oxygen-containing functional groups on the bAuNP surface. The cyclic voltammetry and electrochemical impedance spectroscopic characterizations reveal that while the bAuNPs have a slightly lower conductivity than chemically synthesized AuNPs (cAuNPs). However, the bAuNPs have a superior electrocatalytic performance toward nicotine reduction. After optimization, the bAuNP-modified SPE could detect nicotine linearly from 10 to 2,000 μM with a low detection limit of 2.33 μM. In addition, the bAuNPs/SPE have been successfully used for nicotine-containing-product analysis.


Direct and Sensitive Electrochemical Evaluation of Pramipexole Using Graphitic Carbon Nitride (gCN) Sensor.

  • Yogesh M Shanbhag‎ et al.
  • Biosensors‎
  • 2022‎

Pramipexole (PMXL) belongs to the benzothiazole class of aromatic compounds and is used in treating Parkinson's disease; however, overdosage leads to some abnormal effects that could trigger severe side effects. Therefore, it demands a sensitive analytical tool for trace level detection. In this work, we successfully developed an electrochemical sensor for the trace level detection of PMXL, using the voltammetric method. For the analysis, graphitic carbon nitride (gCN) was opted and synthesized by using a high-temperature thermal condensation method. The synthesized nanoparticles were employed for surface characterization, using transmission electron microscopy (TEM), X-ray diffraction (XRD), and atomic force microscopy (AFM) techniques. The electrochemical characterization of the material was evaluated by using the electrochemical impedance spectroscopy (EIS) technique to evaluate the solution-electrode interface property. The cyclic voltammetry (CV) behavior of PMXL displayed an anodic peak in the forward scan, indicating that PMXL underwent electrooxidation, and an enhanced detection peak with lower detection potential was achieved for gCN-modified carbon paste electrode (gCN·CPE). The influence of different parameters on the electrochemical behavior was analyzed, revealing the diffusion governing the electrode process with an equal number of hydronium ions and electron involvement. For the fabricated gCN·CPE, good linearity range was noticed from 0.05 to 500 µM, and a lower detection limit (LD) of 0.012 µM was achieved for the selected concentration range (0.5 to 30 µM). Selectivity of the electrode in PMXL detection was investigated by conducting an interference study, while the tablet sample analysis demonstrates the sensitive and real-time application of the electrode. The good recovery values for the analysis illustrate the efficiency of the electrode for PMXL analysis.


Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue.

  • Marcio Cristiano Monteiro‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2023‎

A ratiometric electrochemical sensor based on a carbon paste electrode modified with quinazoline-engineered ZnFe Prussian blue analogue (PBA-qnz) was developed for the determination of herbicide butralin. The PBA-qnz was synthesized by mixing an excess aqueous solution of zinc chloride with an aqueous solution of precursor sodium pentacyanido(quinazoline)ferrate. The PBA-qnz was characterized by spectroscopic and electrochemical techniques. The stable signal of PBA-qnz at +0.15 V vs. Ag/AgCl, referring to the reduction of iron ions, was used as an internal reference for the ratiometric sensor, which minimized deviations among multiple assays and improved the precision of the method. Furthermore, the PBA-qnz-based sensor provided higher current responses for butralin compared to the bare carbon paste electrode. The calibration plot for butralin was obtained by square wave voltammetry in the range of 0.5 to 30.0 µmol L-1, with a limit of detection of 0.17 µmol L-1. The ratiometric sensor showed excellent precision and accuracy and was applied to determine butralin in lettuce and potato samples.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: