2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 45 papers out of 45 papers

Reward-enhanced encoding improves relearning of forgotten associations.

  • Ewa A Miendlarzewska‎ et al.
  • Scientific reports‎
  • 2018‎

Research on human memory has shown that monetary incentives can enhance hippocampal memory consolidation and thereby protect memory traces from forgetting. However, it is not known whether initial reward may facilitate the recovery of already forgotten memories weeks after learning. Here, we investigated the influence of monetary reward on later relearning. Nineteen healthy human participants learned object-location associations, for half of which we offered money. Six weeks later, most of these associations had been forgotten as measured by a test of declarative memory. Yet, relearning in the absence of any reward was faster for the originally rewarded associations. Thus, associative memories encoded in a state of monetary reward motivation may persist in a latent form despite the failure to retrieve them explicitly. Alternatively, such facilitation could be analogous to the renewal effect observed in animal conditioning, whereby a reward-associated cue can reinstate anticipatory arousal, which would in turn modulate relearning. This finding has important implications for learning and education, suggesting that even when learned information is no longer accessible via explicit retrieval, the enduring effects of a past prospect of reward could facilitate its recovery.


A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats.

  • J L de Deus‎ et al.
  • Scientific reports‎
  • 2017‎

Exposure to loud sounds has become increasingly common. The most common consequences of loud sound exposure are deafness and tinnitus, but emotional and cognitive problems are also associated with loud sound exposure. Loud sounds can activate the hipothalamic-pituitary-adrenal axis resulting in the secretion of corticosterone, which affects hippocampal synaptic plasticity. Previously we have shown that long-term exposure to short episodes of high intensity sound inhibited hippocampal long-term potentiation (LTP) without affecting spatial learning and memory. Here we aimed to study the impact of short term loud sound exposure on hippocampal synaptic plasticity and function. We found that a single minute of 110 dB sound inhibits hippocampal Schaffer-CA1 LTP for 24 hours. This effect did not occur with an 80-dB sound exposure, was not correlated with corticosterone secretion and was also observed in the perforant-dentate gyrus synapse. We found that despite the deficit in the LTP these animals presented normal spatial learning and memory and fear conditioning. We conclude that a single episode of high-intensity sound impairs hippocampal LTP, without impairing memory and learning. Our results show that the hippocampus is very responsive to loud sounds which can have a potential, but not yet identified, impact on its function.


Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet.

  • Catarina Rendeiro‎ et al.
  • Scientific reports‎
  • 2015‎

Recent evidence suggests that fructose consumption is associated with weight gain, fat deposition and impaired cognitive function. However it is unclear whether the detrimental effects are caused by fructose itself or by the concurrent increase in overall energy intake. In the present study we examine the impact of a fructose diet relative to an isocaloric glucose diet in the absence of overfeeding, using a mouse model that mimics fructose intake in the top percentile of the USA population (18% energy). Following 77 days of supplementation, changes in body weight (BW), body fat, physical activity, cognitive performance and adult hippocampal neurogenesis were assessed. Despite the fact that no differences in calorie intake were observed between groups, the fructose animals displayed significantly increased BW, liver mass and fat mass in comparison to the glucose group. This was further accompanied by a significant reduction in physical activity in the fructose animals. Conversely, no differences were detected in hippocampal neurogenesis and cognitive/motor performance as measured by object recognition, fear conditioning and rotorod tasks. The present study suggests that fructose per se, in the absence of excess energy intake, increases fat deposition and BW potentially by reducing physical activity, without impacting hippocampal neurogenesis or cognitive function.


Observational learning of fear in real time procedure.

  • Michał Szczepanik‎ et al.
  • Scientific reports‎
  • 2020‎

Learning to avoid threats often occurs by observing others. Most previous research on observational fear learning (OFL) in humans has used pre-recorded standardized video of an actor and thus lacked ecological validity. Here, we aimed to enhance ecological validity of the OFL by engaging participants in a real-time observational procedure (35 pairs of healthy male friends, age 18-27). One of the participants watched the other undergo a differential fear conditioning task, in which a conditioned stimulus (CS+) was paired with an aversive electric shock and another stimulus (CS-) was always safe. Subsequently, the CS+ and CS- were presented to the observer to test the OFL. While the friend's reactions to the shock elicited strong skin conductance responses (SCR) in all observers, subsequent differential SCRs (CS+ > CS-) were found only when declarative knowledge of the CS+/US contingency (rated by the participants) was acquired. Contingency-aware observers also showed elevated fear potentiated startle responses during both CS+ and CS- compared to baseline. We conclude that our real-time procedure can be effectively used to study OFL. The procedure allowed for dissecting two components of the OFL: an automatic emotional reaction to the response of the demonstrator and learning about stimulus contingency.


Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area.

  • Francesca Fiori‎ et al.
  • Scientific reports‎
  • 2016‎

The primary motor cortex (M1) is strongly influenced by several frontal regions. Dual-site transcranial magnetic stimulation (dsTMS) has highlighted the timing of early (<40 ms) prefrontal/premotor influences over M1. Here we used dsTMS to investigate, for the first time, longer-latency causal interactions of the posterior inferior frontal gyrus (pIFG) and pre-supplementary motor area (pre-SMA) with M1 at rest. A suprathreshold test stimulus (TS) was applied over M1 producing a motor-evoked potential (MEP) in the relaxed hand. Either a subthreshold or a suprathreshold conditioning stimulus (CS) was administered over ipsilateral pIFG/pre-SMA sites before the TS at different CS-TS inter-stimulus intervals (ISIs: 40-150 ms). Independently of intensity, CS over pIFG and pre-SMA (but not over a control site) inhibited MEPs at an ISI of 40 ms. The CS over pIFG produced a second peak of inhibition at an ISI of 150 ms. Additionally, facilitatory modulations were found at an ISI of 60 ms, with supra- but not subthreshold CS intensities. These findings suggest differential modulatory roles of pIFG and pre-SMA in M1 excitability. In particular, the pIFG -but not the pre-SMA- exerts intensity-dependent modulatory influences over M1 within the explored time window of 40-150 ms, evidencing fine-tuned control of M1 output.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: