Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 39,141 papers

Automatic Mitochondria Segmentation for EM Data Using a 3D Supervised Convolutional Network.

  • Chi Xiao‎ et al.
  • Frontiers in neuroanatomy‎
  • 2018‎

Recent studies have supported the relation between mitochondrial functions and degenerative disorders related to ageing, such as Alzheimer's and Parkinson's diseases. Since these studies have exposed the need for detailed and high-resolution analysis of physical alterations in mitochondria, it is necessary to be able to perform segmentation and 3D reconstruction of mitochondria. However, due to the variety of mitochondrial structures, automated mitochondria segmentation and reconstruction in electron microscopy (EM) images have proven to be a difficult and challenging task. This paper puts forward an effective and automated pipeline based on deep learning to realize mitochondria segmentation in different EM images. The proposed pipeline consists of three parts: (1) utilizing image registration and histogram equalization as image pre-processing steps to maintain the consistency of the dataset; (2) proposing an effective approach for 3D mitochondria segmentation based on a volumetric, residual convolutional and deeply supervised network; and (3) employing a 3D connection method to obtain the relationship of mitochondria and displaying the 3D reconstruction results. To our knowledge, we are the first researchers to utilize a 3D fully residual convolutional network with a deeply supervised strategy to improve the accuracy of mitochondria segmentation. The experimental results on anisotropic and isotropic EM volumes demonstrate the effectiveness of our method, and the Jaccard index of our segmentation (91.8% in anisotropy, 90.0% in isotropy) and F1 score of detection (92.2% in anisotropy, 90.9% in isotropy) suggest that our approach achieved state-of-the-art results. Our fully automated pipeline contributes to the development of neuroscience by providing neurologists with a rapid approach for obtaining rich mitochondria statistics and helping them elucidate the mechanism and function of mitochondria.


Automatic Classification of Thyroid Findings Using Static and Contextualized Ensemble Natural Language Processing Systems: Development Study.

  • Dongyup Shin‎ et al.
  • JMIR medical informatics‎
  • 2021‎

In the case of Korean institutions and enterprises that collect nonstandardized and nonunified formats of electronic medical examination results from multiple medical institutions, a group of experienced nurses who can understand the results and related contexts initially classified the reports manually. The classification guidelines were established by years of workers' clinical experiences and there were attempts to automate the classification work. However, there have been problems in which rule-based algorithms or human labor-intensive efforts can be time-consuming or limited owing to high potential errors. We investigated natural language processing (NLP) architectures and proposed ensemble models to create automated classifiers.


AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

  • Shifu Chen‎ et al.
  • BMC bioinformatics‎
  • 2017‎

Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling.


SparkMaster 2: A New Software for Automatic Analysis of Calcium Spark Data.

  • Jakub Tomek‎ et al.
  • Circulation research‎
  • 2023‎

Calcium (Ca) sparks are elementary units of subcellular Ca release in cardiomyocytes and other cells. Accordingly, Ca spark imaging is an essential tool for understanding the physiology and pathophysiology of Ca handling and is used to identify new drugs targeting Ca-related cellular dysfunction (eg, cardiac arrhythmias). The large volumes of imaging data produced during such experiments require accurate and high-throughput analysis.


The limits of automatic sensorimotor processing during word processing: investigations with repeated linguistic experience, memory consolidation during sleep, and rich linguistic learning contexts.

  • Fritz Günther‎ et al.
  • Psychological research‎
  • 2022‎

While a number of studies have repeatedly demonstrated an automatic activation of sensorimotor experience during language processing in the form of action-congruency effects, as predicted by theories of grounded cognition, more recent research has not found these effects for words that were just learned from linguistic input alone, without sensorimotor experience with their referents. In the present study, we investigate whether this absence of effects can be attributed to a lack of repeated experience and consolidation of the associations between words and sensorimotor experience in memory. To address these issues, we conducted four experiments in which (1 and 2) participants engaged in two separate learning phases in which they learned novel words from language alone, with an intervening period of memory-consolidating sleep, and (3 and 4) we employed familiar words whose referents speakers have no direct experience with (such as plankton). However, we again did not observe action-congruency effects in subsequent test phases in any of the experiments. This indicates that direct sensorimotor experience with word referents is a necessary requirement for automatic sensorimotor activation during word processing.


Convolutional Neural Network for Automatic Identification of Plant Diseases with Limited Data.

  • Ahmed Afifi‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2020‎

Automated identification of plant diseases is very important for crop protection. Most automated approaches aim to build classification models based on leaf or fruit images. These approaches usually require the collection and annotation of many images, which is difficult and costly process especially in the case of new or rare diseases. Therefore, in this study, we developed and evaluated several methods for identifying plant diseases with little data. Convolutional Neural Networks (CNNs) are used due to their superior ability to transfer learning. Three CNN architectures (ResNet18, ResNet34, and ResNet50) were used to build two baseline models, a Triplet network and a deep adversarial Metric Learning (DAML) approach. These approaches were trained from a large source domain dataset and then tuned to identify new diseases from few images, ranging from 5 to 50 images per disease. The proposed approaches were also evaluated in the case of identifying the disease and plant species together or only if the disease was identified, regardless of the affected plant. The evaluation results demonstrated that a baseline model trained with a large set of source field images can be adapted to classify new diseases from a small number of images. It can also take advantage of the availability of a larger number of images. In addition, by comparing it with metric learning methods, we found that baseline model has better transferability when the source domain images differ from the target domain images significantly or are captured in different conditions. It achieved an accuracy of 99% when the shift from source domain to target domain was small and 81% when that shift was large and outperformed all other competitive approaches.


Automatic curvilinear reformatting of three-dimensional MRI data of the cerebral cortex.

  • H-J Huppertz‎ et al.
  • NeuroImage‎
  • 2008‎

Curvilinear reformatting of three-dimensional (3D) MRI data of the cerebral cortex is a well-established tool which improves the display of the gyral structure, permits a precise localization of lesions, and helps to identify subtle abnormalities difficult to detect in planar slices due to the brain's complex convolutional pattern. However, the method is time consuming because it requires interactive manual delineation of the brain surface contour. Therefore, a novel technique for automatic curvilinear reformatting is presented. A T1-weighted MRI volume data set is normalized using SPM2. Due to the normalization to a common stereotactic space, predefined masks can be applied to cover skull and outer brain regions in different depths from the brain surface. Thereby, the outer brain regions are subsequently removed in 2-mm layers parallel to the brain surface like 'peeling an onion'. The serial convex planes enclosing the residual inner part of the brain are presented 3-dimensionally. If necessary (e.g., for intraoperative navigation), the normalized data can be transferred to native space by inverse normalization. Compared to cross-sectional images, curvilinear reformatting offers a markedly superior visualization of topographic relations between lesions and cortical structures, helps to detect subtle cortical malformations and to assess the spatial extent of lesions, thus allowing a better planning of neurosurgical procedures. Compared to alternative methods, it is largely based on freely available software and does not require observer-dependent manual input. In conclusion, we present a simple, easy-to-use and fully automated method for curvilinear reformatting of 3D MRI.


Automatic detect lung node with deep learning in segmentation and imbalance data labeling.

  • Ting-Wei Chiu‎ et al.
  • Scientific reports‎
  • 2021‎

In this study, a novel method with the U-Net-based network architecture, 2D U-Net, is employed to segment the position of lung nodules, which are an early symptom of lung cancer and have a high probability of becoming a carcinoma, especially when a lung nodule is bigger than 15 [Formula: see text]. A serious problem of considering deep learning for all medical images is imbalanced labeling between foreground and background. The lung nodule is the foreground which accounts for a lower percentage in a whole image. The evaluation function adopted in this study is dice coefficient loss, which is usually used in image segmentation tasks. The proposed pre-processing method in this study is to use complementary labeling as the input in U-Net. With this method, the labeling is swapped. The no-nodule position is labeled. And the position of the nodule becomes non-labeled. The result shows that the proposal in this study is efficient in a small quantity of data. This method, complementary labeling could be used in a small data quantity scenario. With the use of ROI segmentation model in the data pre-processing, the results of lung nodule detection can be improved a lot as shown in the experiments.


Kaleido: Visualizing Big Brain Data with Automatic Color Assignment for Single-Neuron Images.

  • Ting-Yuan Wang‎ et al.
  • Neuroinformatics‎
  • 2018‎

Effective 3D visualization is essential for connectomics analysis, where the number of neural images easily reaches over tens of thousands. A formidable challenge is to simultaneously visualize a large number of distinguishable single-neuron images, with reasonable processing time and memory for file management and 3D rendering. In the present study, we proposed an algorithm named "Kaleido" that can visualize up to at least ten thousand single neurons from the Drosophila brain using only a fraction of the memory traditionally required, without increasing computing time. Adding more brain neurons increases memory only nominally. Importantly, Kaleido maximizes color contrast between neighboring neurons so that individual neurons can be easily distinguished. Colors can also be assigned to neurons based on biological relevance, such as gene expression, neurotransmitters, and/or development history. For cross-lab examination, the identity of every neuron is retrievable from the displayed image. To demonstrate the effectiveness and tractability of the method, we applied Kaleido to visualize the 10,000 Drosophila brain neurons obtained from the FlyCircuit database ( http://www.flycircuit.tw/modules.php?name=kaleido ). Thus, Kaleido visualization requires only sensible computer memory for manual examination of big connectomics data.


AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks.

  • Aldo Zaimi‎ et al.
  • Scientific reports‎
  • 2018‎

Segmentation of axon and myelin from microscopy images of the nervous system provides useful quantitative information about the tissue microstructure, such as axon density and myelin thickness. This could be used for instance to document cell morphometry across species, or to validate novel non-invasive quantitative magnetic resonance imaging techniques. Most currently-available segmentation algorithms are based on standard image processing and usually require multiple processing steps and/or parameter tuning by the user to adapt to different modalities. Moreover, only a few methods are publicly available. We introduce AxonDeepSeg, an open-source software that performs axon and myelin segmentation of microscopic images using deep learning. AxonDeepSeg features: (i) a convolutional neural network architecture; (ii) an easy training procedure to generate new models based on manually-labelled data and (iii) two ready-to-use models trained from scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results show high pixel-wise accuracy across various species: 85% on rat SEM, 81% on human SEM, 95% on mice TEM and 84% on macaque TEM. Segmentation of a full rat spinal cord slice is computed and morphological metrics are extracted and compared against the literature. AxonDeepSeg is freely available at https://github.com/neuropoly/axondeepseg .


A Machine Learning Approach to Zeolite Synthesis Enabled by Automatic Literature Data Extraction.

  • Zach Jensen‎ et al.
  • ACS central science‎
  • 2019‎

Zeolites are porous, aluminosilicate materials with many industrial and "green" applications. Despite their industrial relevance, many aspects of zeolite synthesis remain poorly understood requiring costly trial and error synthesis. In this paper, we create natural language processing techniques and text markup parsing tools to automatically extract synthesis information and trends from zeolite journal articles. We further engineer a data set of germanium-containing zeolites to test the accuracy of the extracted data and to discover potential opportunities for zeolites containing germanium. We also create a regression model for a zeolite's framework density from the synthesis conditions. This model has a cross-validated root mean squared error of 0.98 T/1000 Å3, and many of the model decision boundaries correspond to known synthesis heuristics in germanium-containing zeolites. We propose that this automatic data extraction can be applied to many different problems in zeolite synthesis and enable novel zeolite morphologies.


Data analysis with Shapley values for automatic subject selection in Alzheimer's disease data sets using interpretable machine learning.

  • Louise Bloch‎ et al.
  • Alzheimer's research & therapy‎
  • 2021‎

For the recruitment and monitoring of subjects for therapy studies, it is important to predict whether mild cognitive impaired (MCI) subjects will prospectively develop Alzheimer's disease (AD). Machine learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to high variability in disease patterns. Further variability originates from multicentric study designs, varying acquisition protocols, and errors in the preprocessing of magnetic resonance imaging (MRI) scans. The high variability makes the differentiation between signal and noise difficult and may lead to overfitting. This article examines whether an automatic and fair data valuation method based on Shapley values can identify the most informative subjects to improve ML classification.


Automatic Skull Stripping of Rat and Mouse Brain MRI Data Using U-Net.

  • Li-Ming Hsu‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Accurate removal of magnetic resonance imaging (MRI) signal outside the brain, a.k.a., skull stripping, is a key step in the brain image pre-processing pipelines. In rodents, this is mostly achieved by manually editing a brain mask, which is time-consuming and operator dependent. Automating this step is particularly challenging in rodents as compared to humans, because of differences in brain/scalp tissue geometry, image resolution with respect to brain-scalp distance, and tissue contrast around the skull. In this study, we proposed a deep-learning-based framework, U-Net, to automatically identify the rodent brain boundaries in MR images. The U-Net method is robust against inter-subject variability and eliminates operator dependence. To benchmark the efficiency of this method, we trained and validated our model using both in-house collected and publicly available datasets. In comparison to current state-of-the-art methods, our approach achieved superior averaged Dice similarity coefficient to ground truth T2-weighted rapid acquisition with relaxation enhancement and T2∗-weighted echo planar imaging data in both rats and mice (all p < 0.05), demonstrating robust performance of our approach across various MRI protocols.


Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data.

  • João M C Teixeira‎ et al.
  • Journal of biomolecular NMR‎
  • 2018‎

We present Farseer-NMR ( https://git.io/vAueU ), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems' responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension.


VARIFI-Web-Based Automatic Variant Identification, Filtering and Annotation of Amplicon Sequencing Data.

  • Milica Krunic‎ et al.
  • Journal of personalized medicine‎
  • 2019‎

Fast and affordable benchtop sequencers are becoming more important in improving personalized medical treatment. Still, distinguishing genetic variants between healthy and diseased individuals from sequencing errors remains a challenge. Here we present VARIFI, a pipeline for finding reliable genetic variants (single nucleotide polymorphisms (SNPs) and insertions and deletions (indels)). We optimized parameters in VARIFI by analyzing more than 170 amplicon-sequenced cancer samples produced on the Personal Genome Machine (PGM). In contrast to existing pipelines, VARIFI combines different analysis methods and, based on their concordance, assigns a confidence score to each identified variant. Furthermore, VARIFI applies variant filters for biases associated with the sequencing technologies (e.g., incorrectly identified homopolymer-associated indels with Ion Torrent). VARIFI automatically extracts variant information from publicly available databases and incorporates methods for variant effect prediction. VARIFI requires little computational experience and no in-house compute power since the analyses are conducted on our server. VARIFI is a web-based tool available at varifi.cibiv.univie.ac.at.


Computer Vision Based Automatic Recognition of Pointer Instruments: Data Set Optimization and Reading.

  • Lu Wang‎ et al.
  • Entropy (Basel, Switzerland)‎
  • 2021‎

With the promotion of intelligent substations, more and more robots have been used in industrial sites. However, most of the meter reading methods are interfered with by the complex background environment, which makes it difficult to extract the meter area and pointer centerline, which is difficult to meet the actual needs of the substation. To solve the current problems of pointer meter reading for industrial use, this paper studies the automatic reading method of pointer instruments by putting forward the Faster Region-based Convolutional Network (Faster-RCNN) based object detection integrating with traditional computer vision. Firstly, the Faster-RCNN is used to detect the target instrument panel region. At the same time, the Poisson fusion method is proposed to expand the data set. The K-fold verification algorithm is used to optimize the quality of the data set, which solves the lack of quantity and low quality of the data set, and the accuracy of target detection is improved. Then, through some image processing methods, the image is preprocessed. Finally, the position of the centerline of the pointer is detected by the Hough transform, and the reading can be obtained. The evaluation of the algorithm performance shows that the method proposed in this paper is suitable for automatic reading of pointer meters in the substation environment, and provides a feasible idea for the target detection and reading of pointer meters.


Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways.

  • Karin Panser‎ et al.
  • Current biology : CB‎
  • 2016‎

Identifying distinct anatomical structures within the brain and developing genetic tools to target them are fundamental steps for understanding brain function. We hypothesize that enhancer expression patterns can be used to automatically identify functional units such as neuropils and fiber tracts. We used two recent, genome-scale Drosophila GAL4 libraries and associated confocal image datasets to segment large brain regions into smaller subvolumes. Our results (available at https://strawlab.org/braincode) support this hypothesis because regions with well-known anatomy, namely the antennal lobes and central complex, were automatically segmented into familiar compartments. The basis for the structural assignment is clustering of voxels based on patterns of enhancer expression. These initial clusters are agglomerated to make hierarchical predictions of structure. We applied the algorithm to central brain regions receiving input from the optic lobes. Based on the automated segmentation and manual validation, we can identify and provide promising driver lines for 11 previously identified and 14 novel types of visual projection neurons and their associated optic glomeruli. The same strategy can be used in other brain regions and likely other species, including vertebrates.


Automatic extraction of nanoparticle properties using natural language processing: NanoSifter an application to acquire PAMAM dendrimer properties.

  • David E Jones‎ et al.
  • PloS one‎
  • 2014‎

In this study, we demonstrate the use of natural language processing methods to extract, from nanomedicine literature, numeric values of biomedical property terms of poly(amidoamine) dendrimers. We have developed a method for extracting these values for properties taken from the NanoParticle Ontology, using the General Architecture for Text Engineering and a Nearly-New Information Extraction System. We also created a method for associating the identified numeric values with their corresponding dendrimer properties, called NanoSifter. We demonstrate that our system can correctly extract numeric values of dendrimer properties reported in the cancer treatment literature with high recall, precision, and f-measure. The micro-averaged recall was 0.99, precision was 0.84, and f-measure was 0.91. Similarly, the macro-averaged recall was 0.99, precision was 0.87, and f-measure was 0.92. To our knowledge, these results are the first application of text mining to extract and associate dendrimer property terms and their corresponding numeric values.


Construction of an Assisted Model Based on Natural Language Processing for Automatic Early Diagnosis of Autoimmune Encephalitis.

  • Yunsong Zhao‎ et al.
  • Neurology and therapy‎
  • 2022‎

Early diagnosis and etiological treatment can effectively improve the prognosis of patients with autoimmune encephalitis (AE). However, anti-neuronal antibody tests which provide the definitive diagnosis require time and are not always abnormal. By using natural language processing (NLP) technology, our study proposes an assisted diagnostic method for early clinical diagnosis of AE and compares its sensitivity with that of previously established criteria.


Gestational age modulates neural correlates of intentional, but not automatic number magnitude processing in children born preterm.

  • Elise Klein‎ et al.
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience‎
  • 2018‎

Premature birth is a significant risk factor for learning disabilities in general and mathematics learning difficulties in particular. However, the exact reasons for this relation are still unknown. While typical numerical development is associated with a frontal-to-parietal shift of brain activation with increasing age, influences of gestational age have hardly been considered so far. Therefore, we investigated the influence of gestational age on the neural correlates of number processing in 6- and 7-year-old children born prematurely (n=16). Only the numerical distance effect - as a measure of intentional number magnitude processing - elicited the fronto-parietal activation pattern typically observed for numerical cognition. On the other hand, the size congruity effect - as a measure of automatic number magnitude processing - was associated with activation of brain areas typically attributed to cognitive control. Most importantly, however, we observed that gestational age reliably predicted the frontal-to-parietal shift of activation observed for the numerical distance effect. Our findings seem to indicate that human numerical development may start even before birth and prematurity might hamper neural facilitation of the brain circuitry subserving numerical cognition. In turn, this might contribute to the high risk of premature children to develop mathematical learning difficulties.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: