Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 112 papers

Hydroxytyrosol protects against myocardial ischemia reperfusion injury by inhibiting mitochondrial permeability transition pore opening.

  • Jiaxin Miao‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Hydroxytyrosol (HT), a phenolic compound extracted from olive oil, is reported to protect against myocardial ischemia reperfusion injury (MIRI), but its mechanism has not been fully elucidated. The mitochondria permeability transition pore (MPTP) is an important therapeutic target for MIRI. The present study aimed to investigate the role of MPTP in the cardioprotection of HT. Isolated rat hearts were mounted on a Langendorff apparatus and subjected to 30 min of ischemia followed by 120 min of reperfusion to mimic a MIRI model. Isolated hearts were pretreated with different doses of HT (10, 100 and 1,000 µM) for 10 min prior to ischemia. Myocardial infarct size was detected using TTC staining. Changes in myocardial cell structure were observed using hematoxylin and eosin staining. MPTP opening was detected spectrophotometrically. Myocardial cell apoptosis was observed with terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling assays. The expression of apoptosis-associated proteins was measured by western blot analysis. The data revealed that HT (100 and 1,000 µM) treatment significantly alleviated pathological damage in ischemic myocardium and reduced myocardial infarct size compared with the untreated control. However, no significant difference was observed in the 10 µM HT treatment group compared with the untreated control. It was further revealed that HT decreased the B cell lymphoma-2 (Bcl-2)-like protein 4 (Bax)/Bcl-2 ratio, suppressed MPTP opening and subsequently decreased the expression of cytochrome c, cleaved caspase-9 and -3, thereby inhibiting apoptosis. Additionally, the beneficial effects of HT on MIRI were reversed by atractyloside, which induces MPTP opening. In conclusion, the present study demonstrated that HT inhibited MPTP opening, partially via modulation of Bax and Bcl-2, thereby protecting against MIRI and thereby providing a pharmacological basis for future research and treatment of MIRI.


Acute Noise Exposure Is Associated With Intrinsic Apoptosis in Murine Central Auditory Pathway.

  • Moritz Gröschel‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Noise that is capable of inducing the hearing loss (NIHL) has a strong impact on the inner ear structures and causes early and most obvious pathophysiological changes in the auditory periphery. Several studies indicated that intrinsic apoptotic cell death mechanisms are the key factors inducing cellular degeneration immediately after noise exposure and are maintained for days or even weeks. In addition, studies demonstrated several changes in the central auditory system following noise exposure, consistent with early apoptosis-related pathologies. To clarify the underlying mechanisms, the present study focused on the noise-induced gene and protein expression of the pro-apoptotic protease activating factor-1 (APAF1) and the anti-apoptotic B-cell lymphoma 2 related protein a1a (BCL2A1A) in the cochlear nucleus (CN), inferior colliculus (IC) and auditory cortex (AC) of the murine central auditory pathway. The expression of Bcl2a1a mRNA was upregulated immediately after trauma in all tissues investigated, whereas the protein levels were significantly reduced at least in the auditory brainstem. Conversely, acute noise has decreased the expression of Apaf1 gene along the auditory pathway. The changes in APAF1 protein level were not statistically significant. It is tempting to speculate that the acoustic overstimulation leads to mitochondrial dysfunction and induction of apoptosis by regulation of proapoptotic and antiapoptotic proteins. The inverse expression pattern on the mRNA level of both genes might reflect a protective response to decrease cellular damage. Our results indicate the immediate presence of intrinsic apoptosis following noise trauma. This, in turn, may significantly contribute to the development of central structural deficits. Auditory pathway-specific inhibition of intrinsic apoptosis could be a therapeutic approach for the treatment of acute (noise-induced) hearing loss to prevent irreversible neuronal injury in auditory brain structures and to avoid profound deficits in complex auditory processing.


CBX8 promotes tumorigenesis and confers radioresistance in esophageal squamous cell carcinoma cells through targeting APAF1.

  • Yixuan Zhang‎ et al.
  • Gene‎
  • 2019‎

As a transcriptional repressor, Chromobox 8 (CBX8) overexpression is found to be associated with tumorigenesis in several cancers. However, its role in radiotherapy resistance remains poorly characterized. Our study is the first to explore the correlation between CBX8 and radioresistance. We report here that CBX8 is upregulated in Esophageal Squamous Cell Carcinoma (ESCC) tissues and cells and serves as an indicator of poor prognosis for ESCC patients. CBX8 knockdown inhibits cell proliferation, colony formation capability, DNA repair and promotes cell apoptosis. Moreover, the transcriptome sequencing analysis demonstrates that CBX8 downregulates the expression of Apoptotic protease activating factor 1 (APAF1), which is the core protein that mediates mitochondrial apoptotic pathways. APAF1 depletion could abrogate apoptosis induced by CBX8 knockdown in irradiated ESCC cells. Our results provide novel insight into CBX8 as a therapeutic target to improve the radiosensitivity of ESCC.


Protective Effect of Fenofibrate on Oxidative Stress-Induced Apoptosis in Retinal-Choroidal Vascular Endothelial Cells: Implication for Diabetic Retinopathy Treatment.

  • Ying-Jung Hsu‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Diabetic retinopathy (DR) is an important microvascular complication of diabetes and one of the leading causes of blindness in developed countries. Two large clinical studies showed that fenofibrate, a peroxisome proliferator-activated receptor type α (PPAR-α) agonist, reduces DR progression. We evaluated the protective effects of fenofibrate on retinal/choroidal vascular endothelial cells under oxidative stress and investigated the underlying mechanisms using RF/6A cells as the model system and paraquat (PQ) to induce oxidative stress. Pretreatment with fenofibrate suppressed reactive oxygen species (ROS) production, decreased cellular apoptosis, diminished the changes in the mitochondrial membrane potential, increased the mRNA levels of peroxiredoxin (Prx), thioredoxins (Trxs), B-cell lymphoma 2 (Bcl-2), and Bcl-xl, and reduced the level of B-cell lymphoma 2-associated X protein (Bax) in PQ-stimulated RF/6A cells. Western blot analysis revealed that fenofibrate repressed apoptosis through cytosolic and mitochondrial apoptosis signal-regulated kinase-1 (Ask)-Trx-related signaling pathways, including c-Jun amino-terminal kinase (JNK) phosphorylation, cytochrome c release, caspase 3 activation, and poly (ADP-ribose) polymerase-1 (PARP-1) cleavage. These protective effects of fenofibrate on RF/6A cells may be attributable to its anti-oxidative ability. Our research suggests that fenofibrate could serve as an effective adjunct therapy for ocular oxidative stress-related disorders, such as DR.


Sensitivity of allyl isothiocyanate to induce apoptosis via ER stress and the mitochondrial pathway upon ROS production in colorectal adenocarcinoma cells.

  • Jo-Hua Chiang‎ et al.
  • Oncology reports‎
  • 2020‎

Allyl isothiocyanate (AITC), a bioactive phytochemical compound that is a constituent of dietary cruciferous vegetables, possesses promising chemopreventive and anticancer effects. However, reports of AITC exerting antitumor effects on apoptosis induction of colorectal cancer (CRC) cells in vitro are not well elucidated. The present study focused on the functional mechanism of the endoplasmic reticulum (ER) stress‑based apoptotic machinery induced by AITC in human colorectal cancer HT‑29 cells. Our results indicated that AITC decreased cell growth and number, reduced viability, and facilitated morphological changes of apoptotic cell death. DNA analysis by flow cytometry showed G2/M phase arrest, and alterations in the modulated protein levels caused by AITC were detected via western blot analysis. AITC also triggered vital intrinsic apoptotic factors (caspase‑9/caspase‑3 activity), disrupted mitochondrial membrane potential, and stimulated mitochondrial‑related apoptotic molecules (e.g., cytochrome c, apoptotic protease activating factor 1, apoptosis‑inducing factor, and endonuclease G). Additionally, AITC prompted induced cytosolic Ca2+ release and Ca2+‑dependent ER stress‑related signals, such as calpain 1, activating transcription factor 6α, glucose‑regulated proteins 78 and 94, growth arrest‑ and DNA damage‑inducible protein 153 (GADD153), and caspase‑4. The level of reactive oxygen species (ROS) production was found to induce the hallmark of ER stress GADD153, proapoptotic marker caspase‑3, and calpain activity after AITC treatment. Our findings showed for the first time that AITC induced G2/M phase arrest and apoptotic death via ROS‑based ER stress and the intrinsic pathway (mitochondrial‑dependent) in HT‑29 cells. Overall, AITC may exert an epigenetic effect and is a potential bioactive compound for CRC treatment.


Steroid receptor coactivator-3 is a pivotal target of gambogic acid in B-cell Non-Hodgkin lymphoma and an inducer of histone H3 deacetylation.

  • Zichu Zhao‎ et al.
  • European journal of pharmacology‎
  • 2016‎

Gambogic acid (GA), the active ingredient from gamboges, has been verified as a potent anti-tumor agent in many cancer cells. Nevertheless, its function in lymphoma, especially in B-cell Non-Hodgkin lymphoma (NHL), remains unclear. Amplification and/or overexpression of steroid receptor coactivator-3 (SRC-3) have been detected in multiple tumors and have confirmed its critical roles in carcinogenesis, progression, metastasis and therapy resistance in these cancers. However, no clinical data have revealed the overexpression of SRC-3 and its role in B-cell NHL. In this study, we demonstrated the anti-tumor effects of GA, which included cell growth inhibition, G1/S phase cell cycle arrest and apoptosis in B-cell NHL. We also verified that SRC-3 was overexpressed in B-cell NHL in both cell lines and lymph node samples from patients. The overexpressed SRC-3 was a central drug target of GA, and its down-regulation subsequently modulated down-stream gene expression, ultimately contributing to apoptosis. Silencing SRC-3 decreased the expression of Bcl-2, Bcl-6 and cyclin D3, but not of NF-κB and IκB-α. GA treatment did not inhibit the activation of AKT signaling pathway, but induced the deacetylation of histone H3 at lysine 9 and lysine 27. Down-regulated SRC-3 was observed to interact with more HDAC1 to mediate the deacetylation of H3. As the component of E3 ligase, Cullin3 was up-regulated and mediated the degradation of SRC-3. Our results demonstrate that GA is a potent anti-tumor agent that can be used for therapy against B-cell NHL, especially against those with an abundance of SRC-3.


Cell death regulation during influenza A virus infection by matrix (M1) protein: a model of viral control over the cellular survival pathway.

  • U C Halder‎ et al.
  • Cell death & disease‎
  • 2011‎

During early infection, viruses activate cellular stress-response proteins such as heat-shock proteins (Hsps) to counteract apoptosis, but later on, they modulate these proteins to stimulate apoptosis for efficient viral dissemination. Hsp70 has been attributed to modulate viral entry, transcription, nuclear translocation and virion formation. It also exerts its anti-apoptotic function by binding to apoptosis protease-activating factor 1 (Apaf-1) and disrupting apoptosome formation. Here, we show that influenza A virus can regulate the anti-apoptotic function of Hsp70 through viral protein M1 (matrix 1). M1 itself did not induce apoptosis, but enhanced the effects of apoptotic inducers. M1-small-interfering RNA inhibits virus-induced apoptosis in cells after either virus infection or overexpression of the M1 protein. M1 binds to Hsp70, which results in reduced interaction between Hsp70 and Apaf-1. In a cell-free system, the M1 protein mediates procaspase-9 activation induced by cytochrome c/deoxyadenosine triphosphate. A study involving deletion mutants confirmed the role of the C-terminus substrate-binding domain (EEVD) of Hsp70 and amino acids 128-165 of M1 for this association. The M1 mutants, which did not co-immunoprecipitate with Hsp70, failed to induce apoptosis. Overall, the study confirms the proapoptotic function of the M1 protein during influenza virus infection.


Optimization of Experimental Variables Influencing Apoptosome Biosensor in HEK293T Cells.

  • Azarakhsh Oladzad‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2020‎

The apoptotic protease-activating factor 1 (Apaf-1) split luciferase biosensor has been used as a biological tool for the detection of early stage of apoptosis. The effect of doxorubicin in a cell-based assay and the addition of cytochrome c and ATP in a cell-free system have been used to test the functionality of the reporter for the detection of apoptosome formation. Here, our data established a drug- and cytochrome c/ATP-independent way of apoptosis induction relying on the expression of the biosensor itself to induce formation of apoptosome. Overexpression of Apaf-1 constructs led to increased split luciferase activity and caspase-3 activity in the absence of any drug treatment. Caspase-3 activity was significantly inhibited when caspase-9DN was co-overexpressed, while the activity of the Apaf1 biosensor was significantly increased. Our results show that the Apaf-1 biosensor does not detect etoposide-induced apoptosis.


Synthesis, crystal structure and antiproliferative mechanisms of gallium(iii) complexes with benzoylpyridine thiosemicarbazones.

  • Jinxu Qi‎ et al.
  • RSC advances‎
  • 2020‎

We have prepared six thiosemicarbazone ligands and synthesized the corresponding Ga(iii) complexes. The antitumor activity of the ligand increases with its lipophilicity, and the antitumor activity of the Ga(iii) complexes is affected by the ligands. Since C6 has the highest anticancer proliferative activity (0.14 ± 0.01 μM) against HepG-2 (Human hepatocarcinoma cell line), we characterized its structure by X-ray single crystal diffraction and explored its antiproliferation mechanism. Anti-tumor mechanism results show that Ga(iii) complex (C6) promoted HepG-2 cell cycle arrest in the G1 phase by regulating the expression of cell cycle-associated proteins (Cdk 2, cyclin A and cyclin E). Ga(iii) complex (C6) promotes apoptosis by consuming intracellular iron, enhancing intracellular reactive oxygen species (ROS), activating caspase-3/9, releasing cytochromes and apoptotic protease activating factor-1 (apaf-1).


Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways.

  • Yi-Shih Ma‎ et al.
  • Oncology letters‎
  • 2018‎

Oral cancer is a cause of cancer-associated mortality worldwide and the treatment of oral cancer includes radiation, surgery and chemotherapy. Quercetin is a component from natural plant products and it has been demonstrated that quercetin is able to induce cytotoxic effects through induction of cell apoptosis in a number of human cancer cell lines. However, there is no available information to demonstrate that quercetin is able to induce apoptosis in human oral cancer cells. In the present study, the effect of quercetin on the cell death via the induction of apoptosis in human oral cancer SAS cells was investigated using flow cytometry, Annexin V/propidium iodide (PI) double staining, western blotting and confocal laser microscopy examination, to test for cytotoxic effects at 6-48 h after treatment with quercetin. The rate of cell death increased with the duration of quercetin treatment based on the results of a cell viability assay, increased Annexin V/PI staining, increased reactive oxygen species and Ca2+ production, decreased the levels of mitochondrial membrane potential (ΔΨm), increased proportion of apoptotic cells and altered levels of apoptosis-associated protein expression in SAS cells. The results from western blotting revealed that quercetin increased Fas, Fas-Ligand, fas-associated protein with death domain and caspase-8, all of which associated with cell surface death receptor. Furthermore, quercetin increased the levels of activating transcription factor (ATF)-6α, ATF-6β and gastrin-releasing peptide-78 which indicated an increase in endoplasm reticulum stress, increased levels of the pro-apoptotic protein BH3 interacting-domain death antagonist, and decreased levels of anti-apoptotic proteins B-cell lymphoma (Bcl) 2 and Bcl-extra large which may have led to the decreases of ΔΨm. Additionally, confocal microscopy suggested that quercetin was able to increase the expression levels of cytochrome c, apoptosis-inducing factor and endonuclease G, which are associated with apoptotic pathways. Therefore, it is hypothesized that quercetin may potentially be used as a novel anti-cancer agent for the treatment of oral cancer in future.


Copper Induces Oxidative Stress and Apoptosis in the Mouse Liver.

  • Huan Liu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Copper (Cu) is an essential trace element involved in the normal physiological processes of animals. However, excessive exposure to Cu can produce numerous detrimental impacts. The aim of this study was to investigate the effects of Cu on oxidative stress and apoptosis as well as their relationship in the mouse liver. Four-week-old ICR mice (n = 240) were randomly assigned to different Cu (Cu2+-CuSO4) treatment groups (0, 4, 8, and 16 mg/kg) for periods of 21 and 42 days. The high doses of Cu exposure could induce oxidative stress, by increasing the levels of reactive oxygen species (ROS) and protein carbonyls (PC) and decreasing the activities of antisuperoxide anion (ASA) and antihydroxyl radical (AHR) and content of glutathione (GSH), as well as activities and mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Moreover, high doses of Cu exposure induced hepatic apoptosis via the mitochondrial apoptotic pathway, as characterized by the depolarization of mitochondrial membrane potential (MMP); significantly increased mRNA and protein expression levels of cytosolic cytochrome (Cyt c), apoptosis-inducing factor (AIF), endonuclease G (Endo G), apoptosis protease-activating factor-1 (Apaf-1), cleaved caspase-9, cleaved caspase-3, cleaved PARP, Bcl-2 antagonist killer (Bak), Bcl-2-associated X protein (Bax), and Bcl-2-interacting mediator of cell death (Bim); and decreased mRNA and protein expression levels of B-cell lymphoma-2 (Bcl-2) and Bcl-extra-large (Bcl-xL). Furthermore, the activation of the tumor necrosis factor receptor-1 (TNF-R1) signaling pathway was involved in Cu-induced apoptosis, as characterized by the significantly increased mRNA and protein expression levels of TNF-R1, Fas-associated death domain (FADD), TNFR-associated death domain (TRADD), and cleaved caspase-8. These results indicated that exposure to excess Cu could cause oxidative stress triggered by ROS overproduction and diminished antioxidant function, which in turn promoted hepatic apoptosis via mitochondrial apoptosis and that the TNF-R1 signaling pathway was also involved in the Cu-induced apoptosis.


Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway.

  • Yafei Wang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

With the rapid economic development in recent years, China is facing a great challenge due to heavy metal pollution. The heavy metals may enter the human body through ingestion of aqua products to cause great health risks. In the present study, the inhibitory effects of luteolin on the combined toxicity of multi-heavy metals (including zinc, manganese, lead, copper, cadmium, mercury, chromium and nickel) were investigated in HL7702 hepatocyte cells. An MTT assay demonstrated that 20 µM luteolin significantly alleviated the multi-heavy metal mixture-induced cell death and morphological changes. Furthermore, 20 µM luteolin significantly inhibited multi-heavy metal mixture-induced reactive oxygen species (ROS) generation, lipid peroxidation (malondialdehyde content) and caused a decrease in adenosine triphosphate levels in HL7702 cells. A JC-1 staining assay indicated that 20 µM luteolin inhibited the mitochondrial membrane potential-reducing effect of the multi-heavy metal mixture. Apoptotic assays revealed that the multi-heavy metal mixture induced HL7702 cell apoptosis in a dose-dependent manner, which was significantly inhibited by 20 µM luteolin. Western blot analysis indicated that addition of luteolin to the multi‑heavy metal mixture significantly alleviated cytochrome c release from the mitochondria into the cytosol. In addition, 20 µM luteolin had a significant inhibitory effect on multi-heavy metal mixture-induced cleavage of caspase-9, caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein. Immunofluorescence staining demonstrated that addition of luteolin significantly alleviated caspase-3 cleavage induced by the multi-heavy metal mixture. The present results suggested luteolin exerts its inhibitory effects of on multi-heavy metal mixture induced cell apoptosis through downregulation of the ROS-activated mitochondrial pathway.


Combination therapy of hTERTR and FAM96A for hepatocellular carcinoma through enhancing apoptosis sensitivity.

  • Wan-Peng Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

Avoidance of apoptosis induced by anticancer drugs is an essential factor of carcinogenesis and a hallmark of resistance to cancer therapy. Human telomerase reverse transcriptase receptor (hTERTR) is a potential anti-cancer agent for inhibiting tumor growth. Family with sequence similarity 96 member A (FAM96A) is a ubiquitous, conserved protein and possesses apoptosome-activating and pro-apoptotic tumor suppressor potential in hepatocellular carcinoma (HCC). In the present study, hTERTR and FAM96A were identified as efficient anti-cancer agents for activating apoptosomes and reducing tumor growth. The potential tumor suppressor function of combination treatment with hTERTR and FAM96A in HCC was also investigated. hTERTR and FAM96A proteins were expressed by genetic engineering and their anti-cancer function was explored in vitro and in vivo. Effects of hTERTR and FAM96A on improvement of apoptotic sensitivity and inhibition of migration and invasion were examined in cancer cells and in a mouse model. The present results demonstrated that the therapeutic effects of hTERTR and FAM96A were effective for inhibiting tumor growth and inducing apoptosis of HCC cells in H22-bearing nude mice compared with single agent treatment. hTERTR and FAM96A were found to bind with apoptotic protease activating factor 1 and human telomerase reverse transcriptase, which enhanced the apoptosis of tumor cells and apoptosis sensitivity. In addition, hTERTR and FAM96A therapy enhanced cytotoxic effects by cytotoxic T lymphocyte responses, interferon-γ release, T lymphocytes infiltration and apoptosis on tumor cells. Furthermore, hTERTR and FAM96A protein inhibited tumor growth in HCC mice. In conclusion, the present findings suggested that combination therapy with hTERTR and FAM96A may serve as novel tumor suppressor agents.


The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome C.

  • Brona M Murphy‎ et al.
  • The Journal of experimental medicine‎
  • 2003‎

Caspase activation is a central event in numerous forms of apoptosis and results in the proteolytic degradation of multiple substrate proteins that contribute to the apoptotic phenotype. An important route to caspase activation proceeds via assembly of the "apoptosome" as a result of the cell stress-associated release of mitochondrial cytochrome c. Previous studies have shown that primary neutrophils are largely incapable of mitochondrial respiration, suggesting that these cells either lack functional mitochondria or possess a defective respiratory chain. This prompted us to examine whether neutrophils retain an intact cytochrome c/apoptotic protease-activating factor 1 (Apaf-1) pathway to caspase activation and apoptosis. We show that primary human neutrophils contain barely detectable levels of cytochrome c as well as other mitochondrial proteins. Surprisingly, neutrophil cell-free extracts readily supported Apaf-1-dependent caspase activation, suggesting that these cells may assemble cytochrome c-independent apoptosomes. However, further analysis revealed that the trace amount of cytochrome c present in neutrophils is both necessary and sufficient for Apaf-1-dependent caspase activation in these cells. Thus, neutrophils have a lowered threshold requirement for cytochrome c in the Apaf-1-dependent cell death pathway. These observations suggest that neutrophils retain cytochrome c for the purpose of assembling functional apoptosomes rather than for oxidative phosphorylation.


Cannabidiol Induces Cell Cycle Arrest and Cell Apoptosis in Human Gastric Cancer SGC-7901 Cells.

  • Xin Zhang‎ et al.
  • Biomolecules‎
  • 2019‎

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0-G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0-G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


The Anti-tumor Effects of p-Coumaric Acid on Melanoma A375 and B16 Cells.

  • Xue Hu‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Background: Existing research shows that p-coumaric acid (p-CA) can inhibit the proliferation of a variety of tumor cells in vitro. However, there are no reports on the anti-tumor effects of p-CA on melanoma cells. In this study, the inhibitory effects of p-CA on mouse melanoma B16 and human melanoma A375 cells are reported, and the related mechanisms are investigated. Methods: CCK-8 assay was used to detect the effects of p-CA on cell vitality, colony formation assay was used to observe the effects on cell proliferation, Hoechst 33,258 staining was used to observe the morphology of apoptotic cells, flow cytometry was used to detect the effects on apoptosis and the cell cycle, and western blot was used to measure the levels of cell cycle- and apoptosis-related signaling pathway proteins. Results: p-CA significantly inhibits cell proliferation of A375 and B16 cells in a dose-dependent manner and obviously induced cell morphological changes. p-CA arrested A375 cells in the S phase by downregulating the cell cycle-related proteins Cyclin A and CDK2, and arrested B16 cells in the G0-G1 phase through downregulating the cell cycle-related proteins Cyclin E and CDK2. In addition, p-CA significantly promoted apoptosis of A375 and B16 cells. Furthermore, p-CA significantly upregulated the levels of Apaf1 and Bax and downregulated the levels of Bcl-2, and subsequently increased the levels of cytoplasmic cytochrome c (Cyto-c), cleaved caspase-3, and cleaved caspase-9, leading to apoptosis in A375 and B16 cells. Conclusion: p-CA can significantly inhibit the proliferation of human and mouse melanoma cells in vitro. Our research is a step in the development of anti-melanoma drugs.


Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering.

  • Wiem Chaabane‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2014‎

The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin-induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin-induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin-induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway.


Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis.

  • M Sifringer‎ et al.
  • Cell death & disease‎
  • 2012‎

Within the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluoro-phenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-methyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino)3-methylbutyrylamino)propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants.


Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis.

  • D Ferrari‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Apoptosis is induced by different stimuli, among them triggering of the death receptor CD95, staurosporine, and chemotherapeutic drugs. In all cases, apoptosis is mediated by caspases, although it is unclear how these diverse apoptotic stimuli cause protease activation. Two regulatory pathways have been recently identified, but it remains unknown whether they are functionally independent or linked to each other. One is mediated by recruitment of the proximal regulator caspase-8 to the death receptor complex. The other pathway is controlled by the release of cytochrome c from mitochondria and the subsequent ATP-dependent activation of the death regulator apoptotic protease-activating factor 1 (Apaf-1). Here, we report that both pathways can be dissected by depletion of intracellular ATP. Prevention of ATP production completely inhibited caspase activation and apoptosis in response to chemotherapeutic drugs and staurosporine. Interestingly, caspase-8, whose function appeared to be restricted to death receptors, was also activated by these drugs under normal conditions, but not after ATP depletion. In contrast, inhibition of ATP production did not affect caspase activation after triggering of CD95. These results suggest that chemotherapeutic drug-induced caspase activation is entirely controlled by a receptor-independent mitochondrial pathway, whereas CD95-induced apoptosis can be regulated by a separate pathway not requiring Apaf-1 function.


Combining Sodium Butyrate With Cisplatin Increases the Apoptosis of Gastric Cancer In Vivo and In Vitro via the Mitochondrial Apoptosis Pathway.

  • Yangbo Li‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects and can improve prognosis in combination with traditional chemotherapy drugs. The present study aimed to assess the effect of sodium butyrate combined with cisplatin on GC. Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro. Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells. Western blotting was used to verify the above experimental results. A nude mouse xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and cisplatin butyrate in vivo. Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin markedly inhibited the growth of the tumor more effectively than either single agent. The combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased the MMP, and suppressed the invasion and migration abilities of GC cells. Western blotting verified that the combination of sodium butyrate and cisplatin remarkably enhanced the levels of mitochondrial apoptosis-related pathway proteins. Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the mitochondrial apoptosis-related pathway, which might be considered as a therapeutic option for GC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: