Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 306 papers

Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

  • Teri Evans‎ et al.
  • Scientific reports‎
  • 2018‎

Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .


Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum).

  • Catherine D McCusker‎ et al.
  • PloS one‎
  • 2013‎

The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.


Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.

  • Eileen Guelke‎ et al.
  • Gene‎
  • 2015‎

For the precise quantitative RT-PCR normalization a set of valid reference genes is obligatory. Moreover have to be taken into concern the experimental conditions as they bias the regulation of reference genes. Up till now, no reference targets have been described for the axolotl (Ambystoma mexicanum). In a search in the public database SalSite for genetic information of the axolotl we identified fourteen presumptive reference genes, eleven of which were further tested for their gene expression stability. This study characterizes the expressional patterns of 11 putative endogenous control genes during axolotl limb regeneration and in an axolotl tissue panel. All 11 reference genes showed variable expression. Strikingly, ACTB was to be found most stable expressed in all comparative tissue groups, so we reason it to be suitable for all different kinds of axolotl tissue-type investigations. Moreover do we suggest GAPDH and RPLP0 as suitable for certain axolotl tissue analysis. When it comes to axolotl limb regeneration, a validated pair of reference genes is ODC and RPLP0. With these findings, new insights into axolotl gene expression profiling might be gained.


FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum.

  • Akira Satoh‎ et al.
  • Developmental biology‎
  • 2016‎

Urodele amphibians have a remarkable organ regeneration ability that is regulated by neural inputs. The identification of these neural inputs has been a challenge. Recently, Fibroblast growth factor (Fgf) and Bone morphogenic protein (Bmp) were shown to substitute for nerve functions in limb and tail regeneration in urodele amphibians. However, direct evidence of Fgf and Bmp being secreted from nerve endings and regulating regeneration has not yet been shown. Thus, it remained uncertain whether they were the nerve factors responsible for successful limb regeneration. To gather experimental evidence, the technical difficulties involved in the usage of axolotls had to be overcome. We achieved this by modifying the electroporation method. When Fgf8-AcGFP or Bmp7-AcGFP was electroporated into the axolotl dorsal root ganglia (DRG), GFP signals were detectable in the regenerating limb region. This suggested that Fgf8 and Bmp7 synthesized in neural cells in the DRG were delivered to the limbs through the long axons. Further knockdown experiments with double-stranded RNA interference resulted in impaired limb regeneration ability. These results strongly suggest that Fgf and Bmp are the major neural inputs that control the organ regeneration ability.


Identification of differentially expressed thyroid hormone responsive genes from the brain of the Mexican Axolotl (Ambystoma mexicanum).

  • P Huggins‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2012‎

The Mexican axolotl (Ambystoma mexicanum) presents an excellent model to investigate mechanisms of brain development that are conserved among vertebrates. In particular, metamorphic changes of the brain can be induced in free-living aquatic juveniles and adults by simply adding thyroid hormone (T4) to rearing water. Whole brains were sampled from juvenile A. mexicanum that were exposed to 0, 8, and 18 days of 50 nM T4, and these were used to isolate RNA and make normalized cDNA libraries for 454 DNA sequencing. A total of 1,875,732 high quality cDNA reads were assembled with existing ESTs to obtain 5884 new contigs for human RefSeq protein models, and to develop a custom Affymetrix gene expression array (Amby_002) with approximately 20,000 probe sets. The Amby_002 array was used to identify 303 transcripts that differed statistically (p<0.05, fold change >1.5) as a function of days of T4 treatment. Further statistical analyses showed that Amby_002 performed concordantly in comparison to an existing, small format expression array. This study introduces a new A. mexicanum microarray resource for the community and the first lists of T4-responsive genes from the brain of a salamander amphibian.


Morphological features of the myenteric plexus of the stomach of the axolotl, Ambystoma mexicanum, revealed by immunocytochemistry.

  • R Gabriel‎ et al.
  • The Histochemical journal‎
  • 1992‎

The general morphology of the intramural innervation of the myenteric plexus of the axolotl stomach has been investigated using antisera raised against neuron-specific enolase and a microtubule-associated protein. Additionally, the occurrence of serotonin and several peptidergic neurotransmitter/neuromodulator substances was studied. Immunoreactivity for galanin, vasoactive intestinal polypeptide, substance P and neuromedin U was found in both fibres and intrinsic perikarya, whereas the serotonin and calcitonin gene-related peptide-like-substance-containing nerve fibres seemed to be of extrinsic origin. The axolotl stomach myenteric plexus appeared to be devoid of enkephalin-, neuropeptide Y-, somatostatin- and bombesin-like immunoreactive nerve fibres and nerve cell bodies. Double labelling experiments revealed the presence of a subpopulation of substance P/calcitonin gene-related peptide-like immunoreactive nerve fibres. Contrary to mammals, no coexistence of neuromedin U and substance P was found. Our findings illustrate that besides a number of similarities, considerable species differences exist between urodeles and anurans with regard to the organization of the enteric nervous system.


Conservation analysis of core cell cycle regulators and their transcriptional behavior during limb regeneration in Ambystoma mexicanum.

  • Annie Espinal-Centeno‎ et al.
  • Mechanisms of development‎
  • 2020‎

Ambystoma mexicanum (axolotl) has been one of the major experimental models for the study of regeneration during the past 100 years. Axolotl limb regeneration takes place through a multi-stage and complex developmental process called epimorphosis that involves diverse events of cell reprogramming. Such events start with dedifferentiation of somatic cells and the proliferation of quiescent stem cells to generate a population of proliferative cells called blastema. Once the blastema reaches a mature stage, cells undergo progressive differentiation into the diverse cell lineages that will form the new limb. Such pivotal cell reprogramming phenomena depend on the fine-tuned regulation of the cell cycle in each regeneration stage, where cell populations display specific proliferative capacities and differentiation status. The axolotl genome has been fully sequenced and released recently, and diverse RNA-seq approaches have also been generated, enabling the identification and conservatory analysis of core cell cycle regulators in this species. We report here our results from such analyses and present the transcriptional behavior of key regulatory factors during axolotl limb regeneration. We also found conserved protein interactions between axolotl Cyclin Dependent Kinases 2, 4 and 6 and Cyclins type D and E. Canonical CYC-CDK interactions that play major roles in modulating cell cycle progression in eukaryotes.


An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

  • Jenny Shoots‎ et al.
  • Environmental science & technology‎
  • 2015‎

Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.


A clinically relevant blunt spinal cord injury model in the regeneration competent axolotl (Ambystoma mexicanum) tail.

  • Mathias Møller Thygesen‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

A randomized controlled and blinded animal trial was conducted in the axolotl (Ambystoma mexicanum), which has the ability to regenerate from transectional spinal cord injury (SCI). The objective of the present study was to investigate the axolotl's ability to regenerate from a blunt spinal cord trauma in a clinical setting. Axolotls were block-randomized to the intervention (n=6) or sham group (n=6). A laminectomy of two vertebrae at the level caudal to the hind limbs was performed. To induce a blunt SCI, a 25 g rod was released on the exposed spinal cord. Multiple modalities were applied at baseline (pre-surgery), and subsequently every third week for a total of 9 weeks. Gradient echo magnetic resonance imaging (MRI) was applied to assess anatomical regeneration. To support this non-invasive modality, regeneration was assessed by histology, and functional regeneration was investigated using swimming tests and functional neurological examinations. MRI suggested regeneration within 6 to 9 weeks. Histological analysis at 9 weeks confirmed regeneration; however, this regeneration was not complete. By the experimental end, all animals exhibited restored full neurological function. The present study demonstrated that the axolotl is capable of regenerating a contusion SCI; however, the duration of complete regeneration required further investigation.


Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

  • Akira Satoh‎ et al.
  • Developmental biology‎
  • 2012‎

The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration.


Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

  • Jeffrey Lehrberg‎ et al.
  • PloS one‎
  • 2015‎

We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.


Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing.

  • Melissa C Keinath‎ et al.
  • Scientific reports‎
  • 2015‎

Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.


Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

  • Larissa V Ponomareva‎ et al.
  • Comparative biochemistry and physiology. Toxicology & pharmacology : CBP‎
  • 2015‎

Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration.


Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum.

  • Esther Schnapp‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2005‎

Vertebrate regeneration is a fascinating but poorly understood biological phenomena. Urodele amphibians such as Ambystoma mexicanum (the axolotl) can functionally regenerate complex body structures such as the limb and tail, including the spinal cord, throughout life. So far, molecular studies on regeneration have been limited due to the paucity of tools for knocking-down gene and protein function. In this article, we quantitatively assessed the ability of morpholinos to specifically down-regulate protein expression in both cultured urodele cells and in vivo. We focused on the down-regulation of green fluorescent protein and two axolotl proteins, MSX1 and PAX7. Our data show that the expression of these proteins can be efficiently reduced by morpholinos. MSX1 has been hypothesized to be involved in muscle dedifferentiation based on experiments using cultured myotubes. Our studies in in vivo muscle fibers so far have shown no influence of overexpressing or down-regulating MSX1 on the dedifferentiation process.


An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries.

  • Bianca Habermann‎ et al.
  • Genome biology‎
  • 2004‎

The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum.


The eyeless mutant gene (e) in the Mexican axolotl (Ambystoma mexicanum) affects pax-6 expression and forebrain axonogenesis.

  • G W Eagleson‎ et al.
  • The International journal of developmental biology‎
  • 2001‎

This study tested the hypothesis that changes in the patterns of pax-6 expression disrupt the anatomy and axonogenesis of the diencephalic areas of the eyeless axolotl. Proper pax-6 expression is necessary for eye and hypothalamus morphogenesis. Since the expression boundaries of pax-6 also provide a permissive environment for axonal outgrowth, an extensive study examining the effects of the eyeless gene (e) in the Mexican axolotl upon pax-6 expression and forebrain axonogenesis was begun. This study used whole embryo in situ hybridization techniques to follow pax-6 expression and whole brain immunocytochemistry to examine axonogenesis and neural differentiation. These studies demonstrated that the mutant gene e in the axolotl alters the response of midanterior neural-plate tissue to signals from the prechordal plate. This response was hypothesized to be a hyper-response to signals (sonic hedgehog?) that suppressed pax-6 expression within the midanterior neural plate and later developmental stages. Alternatively, the affected neuroectoderm of the eyeless embryos may lack competence to express pax-6. Lowered pax-6 expression inhibited eye and forebrain morphogenesis as well as neural axonogenesis and differentiation. Differentiation defects were detected as the suppression of midline dopaminergic neurons within the suprachiasmatic nucleus of eyeless animals. Thus, lowered pax-6 expression by the midanterior neuroectoderm promotes the eyeless condition by inhibiting the role of pax-6 in eye formation. This lowered expression also leads to concurrent alterations in the hypothalamic terrain which disrupt axonogenesis and ultimately promote sterility.


Amphibian sex determination: segregation and linkage analysis using members of the tiger salamander species complex (Ambystoma mexicanum and A. t. tigrinum).

  • J J Smith‎ et al.
  • Heredity‎
  • 2009‎

Little is known about the genetic basis of sex determination in vertebrates though considerable progress has been made in recent years. In this study, segregation analysis and linkage mapping were performed to localize an amphibian sex-determining locus (ambysex) in the tiger salamander (Ambystoma) genome. Segregation of sex phenotypes (male and female) among the second generation individuals of interspecific crosses (Ambystoma mexicanum x Ambystoma tigrinum tigrinum) was consistent with Mendelian expectations, although a slight female bias was observed. Individuals from these same crosses were typed for single-nucleotide polymorphisms distributed throughout the genome to identify molecular markers for ambysex. A marker (E24C3) was identified approximately 5.9 cM from ambysex. Linkage of E24C3 to ambysex was independently validated in a second, intraspecific cross (A. mexicanum). Interestingly, ambysex locates to the tip of one of the larger linkage groups of the Ambystoma meiotic map. Considering that this location does not show reduced recombination, we speculate that the ambysex locus may have arisen quite recently, within the last few million years. Localization of ambysex sets the stage for gene identification and provides important tools for studying the effect of sex in laboratory and natural populations of this model amphibian system.


Functional Characterization of the Lin28/let-7 Circuit During Forelimb Regeneration in Ambystoma mexicanum and Its Influence on Metabolic Reprogramming.

  • Hugo Varela-Rodríguez‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.


Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

  • Rolf Ericsson‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2004‎

The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates.


Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development.

  • Nicholas Coxe‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2024‎

The axolotl (Ambystoma mexicanum) draws great attention around the world for its importance as a biomedical research model, but housing and maintaining live animals is increasingly expensive and risky as new transgenic lines are developed. The goal of this work was to develop an initial practical pathway for sperm cryopreservation to support germplasm repository development. The present study assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. By the stripping of males, 25-800 µL of sperm fluid was collected at concentrations of 1.6 × 106 to 8.9 × 107 sperm/mL. Sperm remained motile for 5 d in Hanks' Balanced Salt Solution (HBSS) at osmolalities of 100-600 mOsm/kg. Sperm cryopreserved in 0.25 mL French straws at 20 °C/min in a final concentration of 5% DMFA plus 200 mM trehalose and thawed at 25 °C for 15 s resulted in 52 ± 12% total post-thaw motility. In six in vitro fertilization trials, 20% of eggs tested with thawed sperm continued to develop to stage 7-8 after 24 h, and a third of those embryos (58) hatched. This work is the first report of successful production of axolotl offspring with cryopreserved sperm, providing a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: