Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 606 papers

Focal adhesion kinase plays a dual role in TRAIL resistance and metastatic outgrowth of malignant melanoma.

  • Greta Del Mistro‎ et al.
  • Cell death & disease‎
  • 2022‎

Despite remarkable advances in therapeutic interventions, malignant melanoma (MM) remains a life-threating disease. Following high initial response rates to targeted kinase-inhibition metastases quickly acquire resistance and present with enhanced tumor progression and invasion, demanding alternative treatment options. We show 2nd generation hexameric TRAIL-receptor-agonist IZI1551 (IZI) to effectively induce apoptosis in MM cells irrespective of the intrinsic BRAF/NRAS mutation status. Conditioning to the EC50 dose of IZI converted the phenotype of IZI-sensitive parental MM cells into a fast proliferating and invasive, IZI-resistant metastasis. Mechanistically, we identified focal adhesion kinase (FAK) to play a dual role in phenotype-switching. In the cytosol, activated FAK triggers survival pathways in a PI3K- and MAPK-dependent manner. In the nucleus, the FERM domain of FAK prevents activation of wtp53, as being expressed in the majority of MM, and consequently intrinsic apoptosis. Caspase-8-mediated cleavage of FAK as well as FAK knockdown, and pharmacological inhibition, respectively, reverted the metastatic phenotype-switch and restored IZI responsiveness. FAK inhibition also re-sensitized MM cells isolated from patient metastasis that had relapsed from targeted kinase inhibition to cell death, irrespective of the intrinsic BRAF/NRAS mutation status. Hence, FAK-inhibition alone or in combination with 2nd generation TRAIL-receptor agonists may be recommended for treatment of initially resistant and relapsed MM, respectively.


What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue.

  • Komal Qureshi-Baig‎ et al.
  • PloS one‎
  • 2016‎

Due to their self-renewal and tumorigenic properties, tumor-initiating cells (TICs) have been hypothesized to be important targets for colorectal cancer (CRC). However the study of TICs is hampered by the fact that the identification and culturing of TICs is still a subject of extensive debate. Floating three-dimensional spheroid cultures (SC) that grow in serum-free medium supplemented with growth factors are supposed to be enriched in TICs. We generated SC from fresh clinical tumor specimens and compared them to SC isolated from CRC cell-lines as well as to adherent differentiated counterparts. Patient-derived SC display self-renewal capacity and can induce serial transplantable tumors in immuno-deficient mice, which phenotypically resemble the tumor of origin. In addition, the original tumor tissue and established SC retain several similar CRC-relevant mutations. Primary SC express key stemness proteins such as SOX2, OCT4, NANOG and LGR5 and importantly show increased chemoresistance ability compared to their adherent differentiated counterparts and to cell line-derived SC. Strikingly, cells derived from spheroid or adherent differentiating culture conditions displayed similar self-renewal capacity and equally formed tumors in immune-deficient mice, suggesting that self-renewal and tumor-initiation capacity of TICs is not restricted to phenotypically immature spheroid cells, which we describe to be highly plastic and able to reacquire stem-cell traits even after long differentiation processes. Finally, we identified two genes among a sphere gene expression signature that predict disease relapse in CRC patients. Here we propose that SC derived from fresh patient tumor tissue present interesting phenotypic features that may have clinical relevance for chemoresistance and disease relapse and therefore represent a valuable tool to test for new CRC-therapies that overcome drug resistance.


Molecular ruler mechanism and interfacial catalysis of the integral membrane acyltransferase PatA.

  • Itxaso Anso‎ et al.
  • Science advances‎
  • 2021‎

Glycolipids are prominent components of bacterial membranes that play critical roles not only in maintaining the structural integrity of the cell but also in modulating host-pathogen interactions. PatA is an essential acyltransferase involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIMs), key structural elements and virulence factors of Mycobacterium tuberculosis. We demonstrate by electron spin resonance spectroscopy and surface plasmon resonance that PatA is an integral membrane acyltransferase tightly anchored to anionic lipid bilayers, using a two-helix structural motif and electrostatic interactions. PatA dictates the acyl chain composition of the glycolipid by using an acyl chain selectivity “ruler.” We established this by a combination of structural biology, enzymatic activity, and binding measurements on chemically synthesized nonhydrolyzable acyl–coenzyme A (CoA) derivatives. We propose an interfacial catalytic mechanism that allows PatA to acylate hydrophobic PIMs anchored in the inner membrane of mycobacteria, through the use of water-soluble acyl-CoA donors.


Studying the Parkinson's disease metabolome and exposome in biological samples through different analytical and cheminformatics approaches: a pilot study.

  • Begoña Talavera Andújar‎ et al.
  • Analytical and bioanalytical chemistry‎
  • 2022‎

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, with an increasing incidence in recent years due to the aging population. Genetic mutations alone only explain <10% of PD cases, while environmental factors, including small molecules, may play a significant role in PD. In the present work, 22 plasma (11 PD, 11 control) and 19 feces samples (10 PD, 9 control) were analyzed by non-target high-resolution mass spectrometry (NT-HRMS) coupled to two liquid chromatography (LC) methods (reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC)). A cheminformatics workflow was optimized using open software (MS-DIAL and patRoon) and open databases (all public MSP-formatted spectral libraries for MS-DIAL, PubChemLite for Exposomics, and the LITMINEDNEURO list for patRoon). Furthermore, five disease-specific databases and three suspect lists (on PD and related disorders) were developed, using PubChem functionality to identifying relevant unknown chemicals. The results showed that non-target screening with the larger databases generally provided better results compared with smaller suspect lists. However, two suspect screening approaches with patRoon were also good options to study specific chemicals in PD. The combination of chromatographic methods (RP and HILIC) as well as two ionization modes (positive and negative) enhanced the coverage of chemicals in the biological samples. While most metabolomics studies in PD have focused on blood and cerebrospinal fluid, we found a higher number of relevant features in feces, such as alanine betaine or nicotinamide, which can be directly metabolized by gut microbiota. This highlights the potential role of gut dysbiosis in PD development.


Data on quantification of signaling pathways activated by KIT and PDGFRA mutants.

  • Christelle Bahlawane‎ et al.
  • Data in brief‎
  • 2016‎

The present data are related to the article entitled "Insights into ligand stimulation effects on gastro-intestinal stromal tumors signaling" (C. Bahlawane, M. Schmitz, E. Letellier, K. Arumugam, N. Nicot, P.V. Nazarov, S. Haan, 2016) [1]. Constitutive and ligand-derived signaling pathways mediated by KIT and PDGFRA mutated proteins found in gastrointestinal stromal tumors (GIST) were compared. Expression of mutant proteins was induced by doxycycline in an isogenic background (Hek293 cells). Kit was identified by FACS at the cell surface and found to be quickly degraded or internalized upon SCF stimulation for both Kit Wild type and Kit mutant counterparts. Investigation of the main activated pathways in GIST unraveled a new feature specific for oncogenic KIT mutants, namely their ability to be further activated by Kit ligand, the stem cell factor (scf). We were also able to identify the MAPK pathway as the most prominent target for a common inhibition of PDGFRA and KIT oncogenic signaling. Western blotting and micro-array analysis were applied to analyze the capacities of the mutant to induce an effective STATs response. Among all Kit mutants, only Kit Ex11 deletion mutant was able to elicit an effective STATs response whereas all PDGFRA were able to do so.


Comparative transcriptome analysis of Parkinson's disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes.

  • Diana M Hendrickx‎ et al.
  • BMC medical genomics‎
  • 2020‎

Parkinson's Disease (PD) and Hutchinson-Gilford Progeria Syndrome (HGPS) are two heterogeneous disorders, which both display molecular and clinical alterations associated with the aging process. However, similarities and differences between molecular changes in these two disorders have not yet been investigated systematically at the level of individual biomolecules and shared molecular network alterations.


Frequency and developmental timing of linear enamel hypoplasia defects in Early Archaic Texan hunter-gatherers.

  • J Colette Berbesque‎ et al.
  • PeerJ‎
  • 2018‎

Digital photographs taken under controlled conditions were used to examine the incidence of linear enamel hypoplasia defects (LEHs) in burials from the Buckeye Knoll archaeological site (41VT98 Victoria county, Texas), which spans the Early to Late Archaic Period (ca. 2,500-6,500 BP uncorrected radiocarbon). The majority (68 of 74 burials) date to the Texas Early Archaic, including one extremely early burial dated to 8,500 BP. The photogrammetric data collection method also results in an archive for Buckeye Knoll, a significant rare Archaic period collection that has been repatriated and reinterred. We analyzed the incidence and developmental timing of LEHs in permanent canines. Fifty-nine percent of permanent canines (n = 54) had at least one defect. There were no significant differences in LEH frequency between the maxillary and mandibular canines (U = 640.5, n1 = 37, n2 = 43, p = .110). The sample studied (n = 92 permanent canines) had an overall mean of 0.93 LEH defect per tooth, with a median of one defect, and a mode of zero defects. Average age at first insult was 3.92 (median = 4.00, range = 2.5-5.4) and the mean age of all insults per individual was 4.18 years old (range = 2.5-5.67). Age at first insult is consistent with onset of weaning stress-the weaning age range for hunter-gatherer societies is 1-4.5. Having an earlier age of first insult was associated with having more LEHs (n = 54, rho = -0.381, p = 0.005).


Identification of large-scale genomic variation in cancer genomes using in silico reference models.

  • Sarah Killcoyne‎ et al.
  • Nucleic acids research‎
  • 2016‎

Identifying large-scale structural variation in cancer genomes continues to be a challenge to researchers. Current methods rely on genome alignments based on a reference that can be a poor fit to highly variant and complex tumor genomes. To address this challenge we developed a method that uses available breakpoint information to generate models of structural variations. We use these models as references to align previously unmapped and discordant reads from a genome. By using these models to align unmapped reads, we show that our method can help to identify large-scale variations that have been previously missed.


GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets.

  • Miroslav Kratochvíl‎ et al.
  • GigaScience‎
  • 2020‎

The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow the easy generation of data with hundreds of millions of single-cell data points with >40 parameters, originating from thousands of individual samples. The analysis of that amount of high-dimensional data becomes demanding in both hardware and software of high-performance computational resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena.


PINK1 Protects against Staurosporine-Induced Apoptosis by Interacting with Beclin1 and Impairing Its Pro-Apoptotic Cleavage.

  • Francesco Brunelli‎ et al.
  • Cells‎
  • 2022‎

PINK1 is a causative gene for Parkinson's disease and the corresponding protein has been identified as a master regulator of mitophagy-the autophagic degradation of damaged mitochondria. It interacts with Beclin1 to regulate autophagy and initiate autophagosome formation, even outside the context of mitophagy. Several other pro-survival functions of this protein have been described and indicate that it might play a role in other disorders, such as cancer and proliferative diseases. In this study, we investigated a novel anti-apoptotic function of PINK1. To do so, we used SH-SY5Y neuroblastoma cells, a neuronal model used in Parkinson's disease and cancer studies, to characterize the pro-survival functions of PINK1 in response to the apoptosis inducer staurosporine. In this setting, we found that staurosporine induces apoptosis but not mitophagy, and we demonstrated that PINK1 protects against staurosporine-induced apoptosis by impairing the pro-apoptotic cleavage of Beclin1. Our data also show that staurosporine-induced apoptosis is preceded by a phase of enhanced autophagy, and that PINK1 in this context regulates the switch from autophagy to apoptosis. PINK1 protein levels progressively decrease after treatment, inducing this switch. The PINK1-Beclin1 interaction is crucial in exerting this function, as mutants that are unable to interact do not show the anti-apoptotic effect. We characterized a new anti-apoptotic function of PINK1 that could provide options for treatment in proliferative or neurodegenerative diseases.


Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.

  • Anna Golebiewska‎ et al.
  • Acta neuropathologica‎
  • 2020‎

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Prognostic and Predictive Molecular Biomarkers for Colorectal Cancer: Updates and Challenges.

  • Eric Koncina‎ et al.
  • Cancers‎
  • 2020‎

Colorectal cancer (CRC) is a leading cause of death among cancer patients. This heterogeneous disease is characterized by alterations in multiple molecular pathways throughout its development. Mutations in RAS, along with the mismatch repair gene deficiency, are currently routinely tested in clinics. Such biomarkers provide information for patient risk stratification and for the choice of the best treatment options. Nevertheless, reliable and powerful prognostic markers that can identify "high-risk" CRC patients, who might benefit from adjuvant chemotherapy, in early stages, are currently missing. To bridge this gap, genomic information has increasingly gained interest as a potential method for determining the risk of recurrence. However, due to several limitations of gene-based signatures, these have not yet been clinically implemented. In this review, we describe the different molecular markers in clinical use for CRC, highlight new markers that might become indispensable over the next years, discuss recently developed gene expression-based tests and highlight the challenges in biomarker research.


Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants.

  • Maria Doppler‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone.


Insights into ligand stimulation effects on gastro-intestinal stromal tumors signalling.

  • Christelle Bahlawane‎ et al.
  • Cellular signalling‎
  • 2017‎

Mutations in KIT or PDGFRA are responsible for >85% of gastrointestinal stromal tumors. The introduction of imatinib in the GIST therapy scheme revolutionized the patient outcome. Unfortunately, the therapy allows the disease stabilization instead of curation. Furthermore the resistance to the inhibitor arises in most cases within two first years of therapy. A thorough investigation of the signalling pathways activated by the major PDGFRA and KIT mutants encountered in the GIST landscape allowed to identify striking differences between the two receptor tyrosine kinases. PDGFRA mutants were not responsive to their ligand, PDGFAA, and displayed a high constitutive kinase activity. In contrast, all KIT mutants retained, in addition to their constitutive activation, the ability to be stimulated by their ligand. Kit mutants displayed a lower intrinsic kinase activity relative to PDGFRA mutants, while the KIT Exon 11 deletion mutant exhibited the highest intrinsic kinase activity among KIT mutants. At the transcriptomic level, the MAPK pathway was established as the most prominent activated pathway, which is commonly up-regulated by all PDGFRA and KIT mutants. Inhibition of this pathway, using the MEK inhibitor PD0325901, reduced the proliferation of GIST primary cells at nanomolar concentrations. Altogether, our data demonstrate the high value of MEK inhibitors for combination therapy in GIST treatment and more importantly the interest of evaluating the SCF expression profile in GIST patients presenting KIT mutations.


Adding open spectral data to MassBank and PubChem using open source tools to support non-targeted exposomics of mixtures.

  • Anjana Elapavalore‎ et al.
  • Environmental science. Processes & impacts‎
  • 2023‎

The term "exposome" is defined as a comprehensive study of life-course environmental exposures and the associated biological responses. Humans are exposed to many different chemicals, which can pose a major threat to the well-being of humanity. Targeted or non-targeted mass spectrometry techniques are widely used to identify and characterize various environmental stressors when linking exposures to human health. However, identification remains challenging due to the huge chemical space applicable to exposomics, combined with the lack of sufficient relevant entries in spectral libraries. Addressing these challenges requires cheminformatics tools and database resources to share curated open spectral data on chemicals to improve the identification of chemicals in exposomics studies. This article describes efforts to contribute spectra relevant for exposomics to the open mass spectral library MassBank (https://www.massbank.eu) using various open source software efforts, including the R packages RMassBank and Shinyscreen. The experimental spectra were obtained from ten mixtures containing toxicologically relevant chemicals from the US Environmental Protection Agency (EPA) Non-Targeted Analysis Collaborative Trial (ENTACT). Following processing and curation, 5582 spectra from 783 of the 1268 ENTACT compounds were added to MassBank, and through this to other open spectral libraries (e.g., MoNA, GNPS) for community benefit. Additionally, an automated deposition and annotation workflow was developed with PubChem to enable the display of all MassBank mass spectra in PubChem, which is rerun with each MassBank release. The new spectral records have already been used in several studies to increase the confidence in identification in non-target small molecule identification workflows applied to environmental and exposomics research.


SinCMat: A single-cell-based method for predicting functional maturation transcription factors.

  • Sybille Barvaux‎ et al.
  • Stem cell reports‎
  • 2024‎

A major goal of regenerative medicine is to generate tissue-specific mature and functional cells. However, current cell engineering protocols are still unable to systematically produce fully mature functional cells. While existing computational approaches aim at predicting transcription factors (TFs) for cell differentiation/reprogramming, no method currently exists that specifically considers functional cell maturation processes. To address this challenge, here, we develop SinCMat, a single-cell RNA sequencing (RNA-seq)-based computational method for predicting cell maturation TFs. Based on a model of cell maturation, SinCMat identifies pairs of identity TFs and signal-dependent TFs that co-target genes driving functional maturation. A large-scale application of SinCMat to the Mouse Cell Atlas and Tabula Sapiens accurately recapitulates known maturation TFs and predicts novel candidates. We expect SinCMat to be an important resource, complementary to preexisting computational methods, for studies aiming at producing functionally mature cells.


Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing.

  • Emma L Schymanski‎ et al.
  • Environmental science & technology‎
  • 2023‎

Per- and polyfluoroalkyl substances (PFAS) are of high concern, with calls to regulate them as a class. In 2021, the Organisation for Economic Co-operation and Development (OECD) revised the definition of PFAS to include any chemical containing at least one saturated CF2 or CF3 moiety. The consequence is that one of the largest open chemical collections, PubChem, with 116 million compounds, now contains over 7 million PFAS under this revised definition. These numbers are several orders of magnitude higher than previously established PFAS lists (typically thousands of entries) and pose an incredible challenge to researchers and computational workflows alike. This article describes a dynamic, openly accessible effort to navigate and explore the >7 million PFAS and >21 million fluorinated compounds (September 2023) in PubChem by establishing the "PFAS and Fluorinated Compounds in PubChem" Classification Browser (or "PubChem PFAS Tree"). A total of 36500 nodes support browsing of the content according to several categories, including classification, structural properties, regulatory status, or presence in existing PFAS suspect lists. Additional annotation and associated data can be used to create subsets (and thus manageable suspect lists or databases) of interest for a wide range of environmental, regulatory, exposomics, and other applications.


An algorithm to classify homologous series within compound datasets.

  • Adelene Lai‎ et al.
  • Journal of cheminformatics‎
  • 2022‎

Homologous series are groups of related compounds that share the same core structure attached to a motif that repeats to different degrees. Compounds forming homologous series are of interest in multiple domains, including natural products, environmental chemistry, and drug design. However, many homologous compounds remain unannotated as such in compound datasets, which poses obstacles to understanding chemical diversity and their analytical identification via database matching. To overcome these challenges, an algorithm to detect homologous series within compound datasets was developed and implemented using the RDKit. The algorithm takes a list of molecules as SMILES strings and a monomer (i.e., repeating unit) encoded as SMARTS as its main inputs. In an iterative process, substructure matching of repeating units, molecule fragmentation, and core detection lead to homologous series classification through grouping of identical cores. Three open compound datasets from environmental chemistry (NORMAN Suspect List Exchange, NORMAN-SLE), exposomics (PubChemLite for Exposomics), and natural products (the COlleCtion of Open NatUral producTs, COCONUT) were subject to homologous series classification using the algorithm. Over 2000, 12,000, and 5000 series with CH2 repeating units were classified in the NORMAN-SLE, PubChemLite, and COCONUT respectively. Validation of classified series was performed using published homologous series and structure categories, including a comparison with a similar existing method for categorising PFAS compounds. The OngLai algorithm and its implementation for classifying homologues are openly available at: https://github.com/adelenelai/onglai-classify-homologues .


Quantification of 782 Plasma Peptides by Multiplexed Targeted Proteomics.

  • Antoine Lesur‎ et al.
  • Journal of proteome research‎
  • 2023‎

Blood analysis is one of the foundations of clinical diagnostics. In recent years, the analysis of proteins in blood samples by mass spectrometry has taken a jump forward in terms of sensitivity and the number of identified proteins. The recent development of parallel reaction monitoring with parallel accumulation and serial fragmentation (prm-PASEF) combines ion mobility as an additional separation dimension. This increases the proteome coverage while allowing the use of shorter chromatographic gradients. To demonstrate the method's full potential, we used an isotope-labeled synthetic peptide mix of 782 peptides, derived from 579 plasma proteins, spiked into blood plasma samples with a prm-PASEF measurement allowing the quantification of 565 plasma proteins by targeted proteomics. As a less time-consuming alternative to the prm-PASEF method, we describe guided data independent acquisition (dia)-PASEF (g-dia-PASEF) and compare its application to prm-PASEF for measuring blood plasma. To demonstrate both methods' performance in clinical samples, 20 patient plasma samples from a colorectal cancer (CRC) cohort were analyzed. The analysis identified 14 differentially regulated proteins between the CRC patient and control individual plasma samples. This shows the technique's potential for the rapid and unbiased screening of blood proteins, abolishing the need for the preselection of potential biomarker proteins.


Systemic network analysis identifies XIAP and IκBα as potential drug targets in TRAIL resistant BRAF mutated melanoma.

  • Greta Del Mistro‎ et al.
  • NPJ systems biology and applications‎
  • 2018‎

Metastatic melanoma remains a life-threatening disease because most tumors develop resistance to targeted kinase inhibitors thereby regaining tumorigenic capacity. We show the 2nd generation hexavalent TRAIL receptor-targeted agonist IZI1551 to induce pronounced apoptotic cell death in mutBRAF melanoma cells. Aiming to identify molecular changes that may confer IZI1551 resistance we combined Dynamic Bayesian Network modelling with a sophisticated regularization strategy resulting in sparse and context-sensitive networks and show the performance of this strategy in the detection of cell line-specific deregulations of a signalling network. Comparing IZI1551-sensitive to IZI1551-resistant melanoma cells the model accurately and correctly predicted activation of NFκB in concert with upregulation of the anti-apoptotic protein XIAP as the key mediator of IZI1551 resistance. Thus, the incorporation of multiple regularization functions in logical network optimization may provide a promising avenue to assess the effects of drug combinations and to identify responders to selected combination therapies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: