Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 52 papers out of 52 papers

Event-related functional MRI of awake behaving pigeons at 7T.

  • Mehdi Behroozi‎ et al.
  • Nature communications‎
  • 2020‎

Animal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions. The animals were motivated by water reward and behavior was assessed by logging mandibulations during the fMRI experiment with close to zero motion artifacts over hundreds of repeats. To achieve optimal results, we characterized the species-specific hemodynamic response function. As a proof-of-principle, we run a color discrimination task and discovered differential neural networks for Go-, NoGo-, and response execution-phases. Our findings open the door to visualize the neural fundaments of perceptual and cognitive functions in birds-a vertebrate class of which some clades are cognitively on par with primates.


Transmitter receptors reveal segregation of the arcopallium/amygdala complex in pigeons (Columba livia).

  • Christina Herold‎ et al.
  • The Journal of comparative neurology‎
  • 2018‎

At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABAA , muscarinic M1 , M2 and nicotinic acetylcholine (nACh; α4 β2 subtype), noradrenergic α1 and α2 , serotonergic 5-HT1A and dopaminergic D1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts.


Polygenic scores for handedness and their association with asymmetries in brain structure.

  • Sebastian Ocklenburg‎ et al.
  • Brain structure & function‎
  • 2022‎

Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.


Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird.

  • Dominik Heyers‎ et al.
  • Brain structure & function‎
  • 2022‎

The exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The "Wulst" in the forebrain of night-migratory songbirds contains a brain area named "Cluster N", which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morphological and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connections using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in night-migratory songbirds.


Wide-spread brain activation and reduced CSF flow during avian REM sleep.

  • Gianina Ungurean‎ et al.
  • Nature communications‎
  • 2023‎

Mammalian sleep has been implicated in maintaining a healthy extracellular environment in the brain. During wakefulness, neuronal activity leads to the accumulation of toxic proteins, which the glymphatic system is thought to clear by flushing cerebral spinal fluid (CSF) through the brain. In mice, this process occurs during non-rapid eye movement (NREM) sleep. In humans, ventricular CSF flow has also been shown to increase during NREM sleep, as visualized using functional magnetic resonance imaging (fMRI). The link between sleep and CSF flow has not been studied in birds before. Using fMRI of naturally sleeping pigeons, we show that REM sleep, a paradoxical state with wake-like brain activity, is accompanied by the activation of brain regions involved in processing visual information, including optic flow during flight. We further demonstrate that ventricular CSF flow increases during NREM sleep, relative to wakefulness, but drops sharply during REM sleep. Consequently, functions linked to brain activation during REM sleep might come at the expense of waste clearance during NREM sleep.


Investigating robust associations between functional connectivity based on graph theory and general intelligence.

  • Dorothea Metzen‎ et al.
  • Scientific reports‎
  • 2024‎

Previous research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics. On the global level, g showed no significant associations with global efficiency or small-world propensity in any sample, but significant positive associations with global clustering coefficient in two samples. On the node-specific level, elastic-net regressions for nodal efficiency and local clustering yielded no brain areas that exhibited consistent associations amongst data sets. Using the areas identified via elastic-net regression in one sample to predict g in other samples was not successful for local clustering and only led to one significant, one-way prediction across data sets for nodal efficiency. Thus, using conventional graph theoretical measures based on resting-state imaging did not result in replicable associations between functional connectivity and general intelligence.


Memory-updating abrogates extinction of learned immunosuppression.

  • Martin Hadamitzky‎ et al.
  • Brain, behavior, and immunity‎
  • 2016‎

When memories are recalled, they enter a transient labile phase in which they can be impaired or enhanced followed by a new stabilization process termed reconsolidation. It is unknown, however, whether reconsolidation is restricted to neurocognitive processes such as fear memories or can be extended to peripheral physiological functions as well. Here, we show in a paradigm of behaviorally conditioned taste aversion in rats memory-updating in learned immunosuppression. The administration of sub-therapeutic doses of the immunosuppressant cyclosporin A together with the conditioned stimulus (CS/saccharin) during retrieval blocked extinction of conditioned taste aversion and learned suppression of T cell cytokine (interleukin-2; interferon-γ) production. This conditioned immunosuppression is of clinical relevance since it significantly prolonged the survival time of heterotopically transplanted heart allografts in rats. Collectively, these findings demonstrate that memories can be updated on both neural and behavioral levels as well as on the level of peripheral physiological systems such as immune functioning.


Blocking NMDA-receptors in the pigeon's "prefrontal" caudal nidopallium impairs appetitive extinction learning in a sign-tracking paradigm.

  • Daniel Lengersdorf‎ et al.
  • Frontiers in behavioral neuroscience‎
  • 2015‎

Extinction learning provides the ability to flexibly adapt to new contingencies by learning to inhibit previously acquired associations in a context-dependent manner. The neural networks underlying extinction learning were mostly studied in rodents using fear extinction paradigms. To uncover invariant properties of the neural basis of extinction learning, we employ pigeons as a model system. Since the prefrontal cortex (PFC) of mammals is a key structure for extinction learning, we assessed the role of N-methyl-D-aspartate receptors (NMDARs) in the nidopallium caudolaterale (NCL), the avian functional equivalent of mammalian PFC. Since NMDARs in PFC have been shown to be relevant for extinction learning, we locally antagonized NMDARs through 2-Amino-5-phosphonovalerianacid (APV) during extinction learning in a within-subject sign-tracking ABA-renewal paradigm. APV-injection slowed down extinction learning and in addition also caused a disinhibition of responding to a continuously reinforced control stimulus. In subsequent retrieval sessions, spontaneous recovery was increased while ABA renewal was unaffected. The effect of APV resembles that observed in studies of fear extinction with rodents, suggesting common neural substrates of extinction under both appetitive and aversive conditions and highlighting the similarity of mammalian PFC and the avian caudal nidopallium despite 300 million years of independent evolution.


Voxel-wise grey matter asymmetry analysis in left- and right-handers.

  • Sebastian Ocklenburg‎ et al.
  • Neuroscience letters‎
  • 2016‎

Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries.


Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence.

  • Erhan Genç‎ et al.
  • Nature communications‎
  • 2018‎

Previous research has demonstrated that individuals with higher intelligence are more likely to have larger gray matter volume in brain areas predominantly located in parieto-frontal regions. These findings were usually interpreted to mean that individuals with more cortical brain volume possess more neurons and thus exhibit more computational capacity during reasoning. In addition, neuroimaging studies have shown that intelligent individuals, despite their larger brains, tend to exhibit lower rates of brain activity during reasoning. However, the microstructural architecture underlying both observations remains unclear. By combining advanced multi-shell diffusion tensor imaging with a culture-fair matrix-reasoning test, we found that higher intelligence in healthy individuals is related to lower values of dendritic density and arborization. These results suggest that the neuronal circuitry associated with higher intelligence is organized in a sparse and efficient manner, fostering more directed information processing and less cortical activity during reasoning.


The prefrontal cortex of the bottlenose dolphin (Tursiops truncatus Montagu, 1821): a tractography study and comparison with the human.

  • Tommaso Gerussi‎ et al.
  • Brain structure & function‎
  • 2023‎

Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.


Working memory performance is tied to stimulus complexity.

  • Roland Pusch‎ et al.
  • Communications biology‎
  • 2023‎

Working memory is the cognitive capability to maintain and process information over short periods. Behavioral and computational studies have shown that visual information is associated with working memory performance. However, the underlying neural correlates remain unknown. To identify how visual information affects working memory performance, we conducted behavioral experiments in pigeons (Columba livia) and single unit recordings in the avian prefrontal analog, the nidopallium caudolaterale (NCL). Complex pictures featuring luminance, spatial and color information, were associated with higher working memory performance compared to uniform gray pictures in conjunction with distinct neural coding patterns. For complex pictures, we found a multiplexed neuronal code displaying visual and value-related features that switched to a representation of the upcoming choice during a delay period. When processing gray stimuli, NCL neurons did not multiplex and exclusively represented the choice already during stimulus presentation and throughout the delay period. The prolonged representation possibly resulted in a decay of the memory trace ultimately leading to a decrease in performance. In conclusion, we found that high stimulus complexity is associated with neuronal multiplexing of the working memory representation possibly allowing a facilitated read-out of the neural code resulting in enhancement of working memory performance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: