Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 94 papers

A guide to the BRAIN Initiative Cell Census Network data ecosystem.

  • Michael Hawrylycz‎ et al.
  • PLoS biology‎
  • 2023‎

Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.


Toward hippocampal volume measures on ultra-high field magnetic resonance imaging: a comprehensive comparison study between deep learning and conventional approaches.

  • Junyan Lyu‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

The hippocampus is a complex brain structure that plays an important role in various cognitive aspects such as memory, intelligence, executive function, and path integration. The volume of this highly plastic structure is identified as one of the most important biomarkers of specific neuropsychiatric and neurodegenerative diseases. It has also been extensively investigated in numerous aging studies. However, recent studies on aging show that the performance of conventional approaches in measuring the hippocampal volume is still far from satisfactory, especially in terms of delivering longitudinal measures from ultra-high field magnetic resonance images (MRIs), which can visualize more boundary details. The advancement of deep learning provides an alternative solution to measuring the hippocampal volume. In this work, we comprehensively compared a deep learning pipeline based on nnU-Net with several conventional approaches including Freesurfer, FSL and DARTEL, for automatically delivering hippocampal volumes: (1) Firstly, we evaluated the segmentation accuracy and precision on a public dataset through cross-validation. Results showed that the deep learning pipeline had the lowest mean (L = 1.5%, R = 1.7%) and the lowest standard deviation (L = 5.2%, R = 6.2%) in terms of volume percentage error. (2) Secondly, sub-millimeter MRIs of a group of healthy adults with test-retest 3T and 7T sessions were used to extensively assess the test-retest reliability. Results showed that the deep learning pipeline achieved very high intraclass correlation coefficients (L = 0.990, R = 0.986 for 7T; L = 0.985, R = 0.983 for 3T) and very small volume percentage differences (L = 1.2%, R = 0.9% for 7T; L = 1.3%, R = 1.3% for 3T). (3) Thirdly, a Bayesian linear mixed effect model was constructed with respect to the hippocampal volumes of two healthy adult datasets with longitudinal 7T scans and one disease-related longitudinal dataset. It was found that the deep learning pipeline detected both the subtle and disease-related changes over time with high sensitivity as well as the mild differences across subjects. Comparison results from the aforementioned three aspects showed that the deep learning pipeline significantly outperformed the conventional approaches by large margins. Results also showed that the deep learning pipeline can better accommodate longitudinal analysis purposes.


Relationship of medial temporal lobe atrophy, APOE genotype, and cognitive reserve in preclinical Alzheimer's disease.

  • Anja Soldan‎ et al.
  • Human brain mapping‎
  • 2015‎

This study evaluated the utility of baseline and longitudinal magnetic resonance imaging (MRI) measures of medial temporal lobe brain regions collected when participants were cognitively normal and largely in middle age (mean age 57 years) to predict the time to onset of clinical symptoms associated with mild cognitive impairment (MCI). Furthermore, we examined whether the relationship between MRI measures and clinical symptom onset was modified by apolipoprotein E (ApoE) genotype and level of cognitive reserve (CR). MRI scans and measures of CR were obtained at baseline from 245 participants who had been followed for up to 18 years (mean follow-up 11 years). A composite score based on reading, vocabulary, and years of education was used as an index of CR. Cox regression models showed that lower baseline volume of the right hippocampus and smaller baseline thickness of the right entorhinal cortex predicted the time to symptom onset independently of CR and ApoE-ɛ4 genotype, which also predicted the onset of symptoms. The atrophy rates of bilateral entorhinal cortex and amygdala volumes were also associated with time to symptom onset, independent of CR, ApoE genotype, and baseline volume. Only one measure, the left entorhinal cortex baseline volume, interacted with CR, such that smaller volumes predicted symptom onset only in individuals with lower CR. These results suggest that MRI measures of medial temporal atrophy, ApoE-ɛ4 genotype, and the protective effects of higher CR all predict the time to onset of symptoms associated with MCI in a largely independent, additive manner during the preclinical phase of Alzheimer's disease.


Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants.

  • Kenichi Oishi‎ et al.
  • NeuroImage‎
  • 2009‎

The purpose of this paper is to establish single-participant white matter atlases based on diffusion tensor imaging. As one of the applications of the atlas, automated brain segmentation was performed and the accuracy was measured using Large Deformation Diffeomorphic Metric Mapping (LDDMM). High-quality diffusion tensor imaging (DTI) data from a single-participant were B0-distortion-corrected and transformed to the ICBM-152 atlas or to Talairach coordinates. The deep white matter structures, which have been previously well documented and clearly identified by DTI, were manually segmented. The superficial white matter areas beneath the cortex were defined, based on a population-averaged white matter probability map. The white matter was parcellated into 176 regions based on the anatomical labeling in the ICBM-DTI-81 atlas. The automated parcellation was achieved by warping this parcellation map to normal controls and to Alzheimer's disease patients with severe anatomical atrophy. The parcellation accuracy was measured by a kappa analysis between the automated and manual parcellation at 11 anatomical regions. The kappa values were 0.70 for both normal controls and patients while the inter-rater reproducibility was 0.81 (controls) and 0.82 (patients), suggesting "almost perfect" agreement. A power analysis suggested that the proposed method is suitable for detecting FA and size abnormalities of the white matter in clinical studies.


Longitudinal characterization of brain atrophy of a Huntington's disease mouse model by automated morphological analyses of magnetic resonance images.

  • Jiangyang Zhang‎ et al.
  • NeuroImage‎
  • 2010‎

Mouse models of human diseases play crucial roles in understanding disease mechanisms and developing therapeutic measures. Huntington's disease (HD) is characterized by striatal atrophy that begins long before the onset of motor symptoms. In symptomatic HD, striatal volumes decline predictably with disease course. Thus, imaging based volumetric measures have been proposed as outcomes for presymptomatic as well as symptomatic clinical trials of HD. Magnetic resonance imaging of the mouse brain structures is becoming widely available and has been proposed as one of the biomarkers of disease progression and drug efficacy testing. However, three-dimensional and quantitative morphological analyses of the brains are not straightforward. In this paper, we describe a tool for automated segmentation and voxel-based morphological analyses of the mouse brains. This tool was applied to a well-established mouse model of Huntington's disease, the R6/2 transgenic mouse strain. Comparison between the automated and manual segmentation results showed excellent agreement in most brain regions. The automated method was able to sensitively detect atrophy as early as 4 weeks of age and accurately follow disease progression. Comparison between ex vivo and in vivo MRI suggests that the ex vivo end-point measurement of brain morphology is also a valid approach except for the morphology of the ventricles. This is the first report of longitudinal characterization of brain atrophy in a mouse model of Huntington's disease by using automatic morphological analysis.


Knowledge-based automated reconstruction of human brain white matter tracts using a path-finding approach with dynamic programming.

  • Muwei Li‎ et al.
  • NeuroImage‎
  • 2014‎

It has been shown that the anatomy of major white matter tracts can be delineated using diffusion tensor imaging (DTI) data. Tract reconstruction, however, often suffers from a large number of false-negative results when a simple line propagation algorithm is used. This limits the application of this technique to only the core of prominent white matter tracts. By employing probabilistic path-generation algorithms, connectivity between a larger number of anatomical regions can be studied, but an increase in the number of false-positive results is inevitable. One of the causes of the inaccuracy is the complex axonal anatomy within a voxel; however, high-angular resolution (HAR) methods have been proposed to ameliorate this limitation. However, HAR data are relatively rare due to the long scan times required and the low signal-to-noise ratio. In this study, we tested a probabilistic path-finding method in which two anatomical regions with known connectivity were pre-defined and a path that maximized agreement with the DTI data was searched. To increase the accuracy of the trajectories, knowledge-based anatomical constraints were applied. The reconstruction protocols were tested using DTI data from 19 normal subjects to examine test-retest reproducibility and cross-subject variability. Fifty-two tracts were found to be reliably reconstructed using this approach, which can be viewed on our website.


Spatiotemporal mapping of brain atrophy in mouse models of Huntington's disease using longitudinal in vivo magnetic resonance imaging.

  • Manisha Aggarwal‎ et al.
  • NeuroImage‎
  • 2012‎

Mouse models of Huntington's disease (HD) that recapitulate some of the phenotypic features of human HD, play a crucial role in investigating disease mechanisms and testing potential therapeutic approaches. Longitudinal studies of these models can yield valuable insights into the temporal course of disease progression and the effect of drug treatments on the progressive phenotypes. Atrophy of the brain, particularly the striatum, is a characteristic phenotype of human HD, is known to begin long before the onset of motor symptoms, and correlates strongly with clinical features. Elucidating the spatial and temporal patterns of atrophy in HD mouse models is important to characterize the phenotypes of these models, as well as evaluate the effects of neuroprotective treatments at specific time frames during disease progression. In this study, three dimensional in vivo magnetic resonance imaging (MRI) and automated longitudinal deformation-based morphological analysis was used to elucidate the spatial and temporal patterns of brain atrophy in the R6/2 and N171-82Q mouse models of HD. Using an established MRI-based brain atlas and mixed-effects modeling of deformation-based metrics, we report the rates of progression and region-specificity of brain atrophy in the two models. Further, the longitudinal analysis approach was used to evaluate the effects of sertraline and coenzyme Q(10) (CoQ(10)) treatments on progressive atrophy in the N171-82Q model. Sertraline treatment resulted in significant slowing of atrophy, especially in the striatum and frontal cortex regions, while no significant effects of CoQ(10) treatment were observed. Progressive cortical and striatal atrophy in the N171-82Q mice showed significant positive correlations with measured functional deficits. The findings of this report can be used for future testing and comparison of potential therapeutics in mouse models of HD.


Abnormalities of hippocampal surface structure in very mild dementia of the Alzheimer type.

  • Lei Wang‎ et al.
  • NeuroImage‎
  • 2006‎

To better define the pattern of hippocampal deformity early in the course of Alzheimer's disease, we compared the pattern of hippocampal surface variation in subjects with very mild dementia of the Alzheimer type (DAT) and nondemented subjects. The surface of the hippocampus was divided a priori on a neuroanatomical template into three zones approximating the locations of underlying subfields [Csernansky, J.G., Wang, L., Swank, J., Miller, J.P., Gado, M., McKeel, D., Miller, M.I., Morris, J.C., 2005. Preclinical detection of Alzheimer's disease: hippocampal shape and volume predict dementia onset in the elderly. NeuroImage 25, 783--792]; i.e., a lateral zone (LZ) approximating the CA1 subfield, a superior zone (SZ) approximating the combined CA2, CA3, CA4 subfields and the gyrus dentatus (GD), and an inferior-medial zone (IMZ) approximating the subiculum. Large-deformation high-dimensional brain mapping (HDBM-LD) was used to generate the hippocampal surfaces of all subjects and to register the surface zones across subjects. Average variations within each zone were calculated for the subjects with very mild DAT as compared to the average of the nondemented subjects. After correcting for multiple comparisons, the very mild DAT subjects showed significant inward variation in the left and right LZ, the left and right IMZ, but not in the left and right SZ as compared to nondemented subjects. In logistic regression analyses, inward variation of the left and right LZ or IMZ by 0.1 mm relative to the average of the nondemented subjects increased the odds of the subject being a very mild DAT subject (range-1.18 to 1.57) rather than being a nondemented subject. The odds ratios for the left and right SZ were not significant. These results represent a replication of our previous findings [Csernansky, J.G., Wang, L., Joshi, S., Miller, J.P., Gado, M., Kido, D., McKeel, D., Morris, J.C., Miller, M.I., 2000. Early DAT is distinguished from aging by high-dimensional mapping of the hippocampus. Neurology 55, 1636--1643.] and suggest that inward deformities of the hippocampal surface in proximity to the CA1 subfield and subiculum can be used to distinguish subjects with very mild DAT from nondemented subjects.


DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum.

  • Hao Huang‎ et al.
  • NeuroImage‎
  • 2005‎

Morphology of the corpus callosum (CC) at the mid-sagittal level has been a target of extensive studies. However, the lack of internal structures and its polymorphism make it a challenging task to quantitatively analyze shape differences among subjects. In this paper, diffusion tensor Imaging (DTI) and tract tracing technique were applied to incorporate cortical connectivity information to the morphological study. The CC was parcellated into six major subdivisions based on trajectories to different cortical areas. This subdivision was performed for eight normal subjects and one stroke patient. The parcellated CCs of the normal subjects were normalized for morphological analysis. When comparing the stroke patient to the normal population, we detected significant atrophy in the motor and sensory areas of the patient CC, in line with the clinical deficits. This approach provides a new tool to investigate callosal morphology and functional relationships.


High-resolution fMRI investigation of the medial temporal lobe.

  • C Brock Kirwan‎ et al.
  • Human brain mapping‎
  • 2007‎

The medial temporal lobe (MTL) is critical for declarative memory formation. Several theories of MTL function propose functional distinctions between the different structures of the MTL, namely the hippocampus and the surrounding cortical areas. Furthermore, computational models and electrophysiological studies in animals suggest distinctions between the subregions of the hippocampus itself. Standard fMRI resolution is not sufficiently fine to resolve activity on the scale of hippocampal subregions. Several approaches to scanning the MTL at high resolutions have been made, however there are limitations to these approaches, namely difficulty in conducting group-level analyses. We demonstrate here techniques for scanning the MTL at high resolution and analyzing the high-resolution fMRI data at the group level. To address the issue of cross-participant alignment, we employ the ROI-LDDMM alignment technique, which is demonstrated to result in smaller alignment errors when compared with several other common normalization techniques. Finally, we demonstrate that the pattern of activation obtained in the high-resolution functional data is similar to that obtained at lower resolution, although the spatial extent is smaller and the percent signal change is greater. This difference in the pattern of activation may be due to less partial volume sampling in the high-resolution data, resulting in more accentuated regions of activation.


Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template.

  • Susumu Mori‎ et al.
  • NeuroImage‎
  • 2008‎

Brain registration to a stereotaxic atlas is an effective way to report anatomic locations of interest and to perform anatomic quantification. However, existing stereotaxic atlases lack comprehensive coordinate information about white matter structures. In this paper, white matter-specific atlases in stereotaxic coordinates are introduced. As a reference template, the widely used ICBM-152 was used. The atlas contains fiber orientation maps and hand-segmented white matter parcellation maps based on diffusion tensor imaging (DTI). Registration accuracy by linear and non-linear transformation was measured, and automated template-based white matter parcellation was tested. The results showed a high correlation between the manual ROI-based and the automated approaches for normal adult populations. The atlases are freely available and believed to be a useful resource as a target template and for automated parcellation methods.


Fitting Splines to Axonal Arbors Quantifies Relationship Between Branch Order and Geometry.

  • Thomas L Athey‎ et al.
  • Frontiers in neuroinformatics‎
  • 2021‎

Neuromorphology is crucial to identifying neuronal subtypes and understanding learning. It is also implicated in neurological disease. However, standard morphological analysis focuses on macroscopic features such as branching frequency and connectivity between regions, and often neglects the internal geometry of neurons. In this work, we treat neuron trace points as a sampling of differentiable curves and fit them with a set of branching B-splines. We designed our representation with the Frenet-Serret formulas from differential geometry in mind. The Frenet-Serret formulas completely characterize smooth curves, and involve two parameters, curvature and torsion. Our representation makes it possible to compute these parameters from neuron traces in closed form. These parameters are defined continuously along the curve, in contrast to other parameters like tortuosity which depend on start and end points. We applied our method to a dataset of cortical projection neurons traced in two mouse brains, and found that the parameters are distributed differently between primary, collateral, and terminal axon branches, thus quantifying geometric differences between different components of an axonal arbor. The results agreed in both brains, further validating our representation. The code used in this work can be readily applied to neuron traces in SWC format and is available in our open-source Python package brainlit: http://brainlit.neurodata.io/.


Perceived friendship and binge drinking in young adults: A study of the Human Connectome Project data.

  • Guangfei Li‎ et al.
  • Drug and alcohol dependence‎
  • 2021‎

Peer influences figure prominently in young adult binge drinking. Women have trended to show a level of alcohol use on par with men during the last decades. It would be of interest to investigate the neural processes of social cognition that may underlie binge drinking and the potential sex differences.


Hierarchical Subcortical Sub-Regional Shape Network Analysis in Alzheimer's Disease.

  • Jingyuan Li‎ et al.
  • Neuroscience‎
  • 2017‎

In this paper, by utilizing surface diffeomorphic deformations, we constructed and analyzed subcortical shape morphometric networks in 210 healthy control (HC) subjects and 175 subjects with Alzheimer's disease (AD), aiming to identify AD-induced abnormalities in the subcortical shape network. We quantitatively analyzed pertinent network attributes of the entire network and each node. Further to this, hierarchical analyses were performed; group comparisons were conducted at the structure level first and then the sub-region level. The bilateral amygdalae, hippocampi, as well as the thalamus were all divided into multiple functionally distinct sub-regions. From the structure level analysis, we found significant HC-vs-AD group differences in the average local efficiency and average global efficiency. In addition, the local nodal efficiencies between the right thalamus and all three of the right hippocampus, right amygdala, and left thalamus, as well as that between the left amygdala and left hippocampus, decreased significantly in AD. According to the sub-regional network analyses, we observed significant AD-induced local efficiency decreases between different sub-regions within the right hippocampus itself and between the subiculum of the right hippocampus and the sub-region of the right thalamus connecting to the temporal lobe, indicating a degradation of circuit between the hippocampus, thalamus, and temporal lobe. Statistical comparisons were performed using 40,000 non-parametric permutation tests, with false discovery rate correction employed for multiple comparison correction.


Influence of EGR3 Transfection on Imaging and Behavior in Rats and Therapeutic Effect of Risperidone in Schizophrenia Model.

  • Guangfei Li‎ et al.
  • Frontiers in psychiatry‎
  • 2020‎

Schizophrenia is a type of neurodevelopmental psychiatric disorder. However, to date, scientists have not discovered the etiology and effective treatment of this condition. We injected the early growth response gene (EGR3) into the bilateral hippocampus to build a schizophrenia rat model. Behavioral phenotyping and resting-state functional magnetic resonance imaging (rs-fMRI) were used to analyze the behavioral and cerebral alterations in the schizophrenia rat model. The efficacy of risperidone therapy was also evaluated. We divided 34 rats into four groups: schizophrenia model group (E group), sham-operation group (FE group), healthy control group (H group), and risperidone therapy group (T group). Open field test and Morris water maze were conducted as behavioral experiments. Next, we performed rs-fMRI after four weeks of EGR3 transfection and risperidone treatment and analyzed imaging data using regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF), and functional connectivity (FC). We examined the difference in behavioral and neural activation among the four groups and considered the correlations between behavior and imaging results. EGR3 gene transfection decreased the total moved distance in the open field test and the duration in the Q5 zone of the Morris water maze. Risperidone treatment reversed the trend and improved the performance of rats in these behavioral tests. Schizophrenia induced several neural alterations in ALFF and ReHo metrics of the rat brain, and risperidone could partly reverse these alterations. The results suggest that similar research is required for schizophrenia and that risperidone may be a novel treatment for dysregulated neural activation in schizophrenia.


Atlas pre-selection strategies to enhance the efficiency and accuracy of multi-atlas brain segmentation tools.

  • Chenfei Ye‎ et al.
  • PloS one‎
  • 2018‎

Multi-atlas brain segmentation of human brain MR images allows quantification research in structural neuroimaging. To achieve high accuracy and computational efficiency of segmentation relies on a custom subset of atlases for each target subject. However, the criterion for atlas pre-selection remains an open question. In this study, two atlas pre-selection approaches based on location-based feature matching were proposed and compared to random and mutual information-based methods using a database of 47 atlases. A varying number of atlases ranked top with hierarchical structural granularity were compared using Dice overlap. The results indicated that the proposed 4L approach consistently led to the highest level of accuracy at a given number of employed atlases in both adult and geriatric populations. In addition, the proposed two methods (4L and LV) can reduce 20 times computational time compared with the stereotypical mutual information-based method. Our pre-selection strategy would provide better segmentation performance in terms of both accuracy and efficiency. The proposed atlas pre-selection will be further implemented into our online automatic brain image segmentation system (www.mricloud.org).


Multimodal cross-registration and quantification of metric distortions in marmoset whole brain histology using diffeomorphic mappings.

  • Brian C Lee‎ et al.
  • The Journal of comparative neurology‎
  • 2021‎

Whole brain neuroanatomy using tera-voxel light-microscopic data sets is of much current interest. A fundamental problem in this field is the mapping of individual brain data sets to a reference space. Previous work has not rigorously quantified in-vivo to ex-vivo distortions in brain geometry from tissue processing. Further, existing approaches focus on registering unimodal volumetric data; however, given the increasing interest in the marmoset model for neuroscience research and the importance of addressing individual brain architecture variations, new algorithms are necessary to cross-register multimodal data sets including MRIs and multiple histological series. Here we present a computational approach for same-subject multimodal MRI-guided reconstruction of a series of consecutive histological sections, jointly with diffeomorphic mapping to a reference atlas. We quantify the scale change during different stages of brain histological processing using the Jacobian determinant of the diffeomorphic transformations involved. By mapping the final image stacks to the ex-vivo post-fixation MRI, we show that (a) tape-transfer assisted histological sections can be reassembled accurately into 3D volumes with a local scale change of 2.0 ± 0.4% per axis dimension; in contrast, (b) tissue perfusion/fixation as assessed by mapping the in-vivo MRIs to the ex-vivo post fixation MRIs shows a larger median absolute scale change of 6.9 ± 2.1% per axis dimension. This is the first systematic quantification of local metric distortions associated with whole-brain histological processing, and we expect that the results will generalize to other species. These local scale changes will be important for computing local properties to create reference brain maps.


Down-sampling template curve to accelerate LDDMM-curve with application to shape analysis of the corpus callosum.

  • Weikai Huang‎ et al.
  • Healthcare technology letters‎
  • 2021‎

Large deformation diffeomorphic metric mapping for curve (LDDMM-curve) has been widely used in deformation based statistical shape analysis of the mid-sagittal corpus callosum. A main limitation of LDDMM-curve is that it is time-consuming and computationally complex. In this study, down-sampling strategies for accelerating LDDMM-curve are investigated and tested on two large datasets, one on Alzheimer's disease (155 Alzheimer's disease, 325 mild cognitive impairment and 185 healthy controls) and the other on first-episode schizophrenia (92 first-episode schizophrenia and 106 healthy controls). For both datasets a variety of down-sampling factors are tested in terms of registration accuracy, registration speed, and most importantly disease-related patterns. Experimental results revealed that down-sampling template curve by a factor of 2 can significantly reduce the running time of LDDMM-curve without sacrificing the registration accuracy. Also, the disease-induced patterns, or more specifically the group comparison results, were almost identical before and after down-sampling. It is also shown that there was no need to down-sample the target population curves but only the single template curve of the study of interest. Comprehensive analyses were conducted.


Improved outcomes of UM171-expanded cord blood transplantation compared with other graft sources: real-world evidence.

  • Sandra Cohen‎ et al.
  • Blood advances‎
  • 2023‎

Cord blood (CB) transplantation is hampered by low cell dose and high nonrelapse mortality (NRM). A phase 1-2 trial of UM171-expanded CB transplants demonstrated safety and favorable preliminary efficacy. The aim of the current analysis was to retrospectively compare results of the phase 1-2 trial with those after unmanipulated CB and matched-unrelated donor (MUD) transplants. Data from recipients of CB and MUD transplants were obtained from the Center for International Blood and Marrow Transplant Research (CIBMTR) database. Patients were directly matched for the number of previous allogeneic hematopoietic stem cell transplants (alloHCT), disease and refined Disease Risk Index. Patients were further matched by propensity score for age, comorbidity index, and performance status. Primary end points included NRM, progression-free survival (PFS), overall survival (OS), and graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) at 1 and 2 years after alloHCT. Overall, 137 patients from CIBMTR (67 CB, 70 MUD) and 22 with UM171-expanded CB were included. NRM at 1 and 2 years was lower, PFS and GRFS at 2 years and OS at 1 year were improved for UM171-expanded CBs compared with CB controls. Compared with MUD controls, UM171 recipients had lower 1- and 2-year NRM, higher 2-year PFS, and higher 1- and 2-year GRFS. Furthermore, UM171-expanded CB recipients experienced less grades 3-4 acute GVHD and chronic GVHD compared with MUD graft recipients. Compared with real-world evidence with CB and MUD alloHCT, this study suggests that UM171-expanded CB recipients may benefit from lower NRM and higher GRFS. This trial was registered at www.clinicaltrials.gov as #NCT02668315.


A Universal Method for Crossing Molecular and Atlas Modalities using Simplex-Based Image Varifolds and Quadratic Programming.

  • Kaitlin M Stouffer‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

This paper explicates a solution to the problem of building correspondences between molecular-scale transcriptomics and tissue-scale atlases. The central model represents spatial transcriptomics as generalized functions encoding molecular position and high-dimensional transcriptomic-based (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling each atlas compartment as a homogeneous random field with unknown transcriptomic feature distribution. The algorithm presented solves simultaneously for the minimizing geodesic diffeomorphism of coordinates and latent atlas transcriptomic feature fractions by alternating LDDMM optimization for coordinate transformations and quadratic programming for the latent transcriptomic variables. We demonstrate the universality of the algorithm in mapping tissue atlases to gene-based and cell-based MERFISH datasets as well as to other tissue scale atlases. The joint estimation of diffeomorphisms and latent feature distributions allows integration of diverse molecular and cellular datasets into a single coordinate system and creates an avenue of comparison amongst atlas ontologies for continued future development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: