Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 169 papers

An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression.

  • Jindan Yu‎ et al.
  • Cancer cell‎
  • 2010‎

Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.


SMRT sequencing revealed to be an effective method for ADTKD-MUC1 diagnosis through follow-up analysis of a Chinese family.

  • Guo-Qin Wang‎ et al.
  • Scientific reports‎
  • 2020‎

We reported a large Chinese family diagnosed with autosomal dominant tubulointerstitial kidney disease caused by MUC1 mutation (ADTKD-MUC1). Cytosine duplication within a string of 7 cytosines in the variable-number tandem repeats (VNTR) region of the MUC1 gene was detected by long-read single-molecule real-time (SMRT) sequencing. MUC1 frameshift protein (MUC1fs) was found to be expressed in renal tubules and urinary exfoliated cells by pathological examination. The family, which consisted of 5 generations including 137 individuals, was followed for 5 years. Genetic testing was performed in thirty-four individuals, 17 of whom carried MUC1 mutations. The ADTKD-MUC1-affected individuals had an elevated incidence of hyperuricaemia without gout attack. Within five years, higher baseline levels of urinary α1-microglobulin were detected in affected individuals with rapidly progressing renal failure than in affected individuals with stable renal function, and the increases manifested even before increases in serum creatinine. This study demonstrates that SMRT sequencing is an effective method for the identification of MUC1 mutations. The pathological examination of MUC1fs expression in renal tissue and urinary exfoliated cells can contribute to early screening of family members suspected to be affected. It is suggested that affected individuals with elevated urinary α1-microglobulin levels should be closely monitored for renal function.


HuangqiGuizhiWuwu Decoction Prevents Vascular Dysfunction in Diabetes via Inhibition of Endothelial Arginase 1.

  • Hong Cheng‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Hyperglycemia induces vascular endothelial dysfunction, which contributes to the development of vascular complication of diabetes. A classic prescription of traditional medicine, HuangqiGuizhiWuwu Decoction (HGWWD) has been used for the treatment of various cardiovascular and cerebrovascular diseases, which all are related with vascular pathology. The present study investigated the effect of HGWWD treatment in streptozocin (STZ)-induced vascular dysfunction in mouse models. In vivo studies were performed using wild type mice as well as arginase 1 knockout specific in endothelial cells (EC-A1-/-) of control mice, diabetes mice and diabetes mice treated with HGWWD (60 g crude drugs/kg/d) for 2 weeks. For in vitro studies, aortic tissues were treated with mice serum containing HGWWD with or without adenoviral arginase 1 (Ad-A1) transduction in high glucose (HG) medium. We found that HGWWD treatment restored STZ-induced impaired mean velocity and pulsatility index of mouse left femoral arteries, aortic pulse wave velocity and vascular endothelial relaxation accompanied by elevated NO production in the aorta and plasma, as well as reduced endothelial arginase activity and aortic arginase 1 expression. The protective effect of HGWWD is reversed by an inhibitor of nitric oxide synthesis. Meanwhile, the preventive effect of serum containing HGWWD in endothelial vascular dysfunction is completely blocked by Ad-A1 transduction in HG incubated aortas. HGWWD treatment further improved endothelial vascular dysfunction in STZ induced EC-A1-/- mice. This study demonstrates that HGWWD improved STZ-induced vascular dysfunction through arginase 1 - NO signaling, specifically targeting endothelial arginase 1.


Mild renal insufficiency and attributable risk of adverse In-hospital outcomes in patients with Acute Coronary Syndrome from the improving care for Cardiovascular Disease in China (CCC) project.

  • Fengbo Xu‎ et al.
  • BMC nephrology‎
  • 2022‎

Renal insufficiency (RI) is a frequent comorbidity among patients with acute coronary syndrome (ACS). We aimed to evaluate the attributable risk associated with mild RI for the in-hospital outcomes in patients with ACS.


Sphingosine-1-phosphate, a novel TREM2 ligand, promotes microglial phagocytosis to protect against ischemic brain injury.

  • Tengfei Xue‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2022‎

The mechanism of sphingosine-1-phosphate (S1P)-mediated phagocytosis remains unknown. Here, we found that S1P or FTY720 (an analog of S1P) promoted microglial phagocytosis in stroke independent of S1PRs. First, we used computer simulation of molecular docking to predict that S1P might be a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). Next, microscale thermophoresis (MST), surface plasmon resonance (SPR) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to reveal that S1P was a novel TREM2 ligand. Then, we confirmed the pro-phagocytosis of S1P targeting in Trem2-Dap12 transfected CHO cells and TREM2 knockdown microglia. Point mutation analysis showed that D104 was the critical binding residue. Trem2 -/- mice were used to demonstrate the role of S1P-induced phagocytosis targeting on TREM2 in protecting against ischemic brain injury. Finally, further studies revealed that apolipoprotein E (APOE) loaded with S1P was released by microglia and bound to apoptotic neurons via LDL receptor related protein 1B (LRP1B) and thereby induced microglia to phagocytose apoptotic neurons. Overall, the present work reveals for the first time that S1P acts as a novel endogenous ligand of TREM2 to effectively promote microglial phagocytosis. Our findings provide a new lead compound for developing immunomodulator targeting on TREM2.


A non-metabolic function of hexokinase 2 in small cell lung cancer: promotes cancer cell stemness by increasing USP11-mediated CD133 stability.

  • Juhong Wang‎ et al.
  • Cancer communications (London, England)‎
  • 2022‎

Maintenance of cancer stem-like cell (CSC) stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self-renewal and tumor progression. As a key glycolytic enzyme, hexokinase 2 (HK2) plays an instrumental role in aerobic glycolysis and tumor progression. However, whether HK2 directly contribute to CSC stemness maintenance in small cell lung cancer (SCLC) is largely unclear. In this study, we aimed to investgate whether HK2 independent of its glycolytic activity is directly involved in stemness maintenance of CSC in SCLC.


Axon-enriched lincRNA ALAE is required for axon elongation via regulation of local mRNA translation.

  • Manyi Wei‎ et al.
  • Cell reports‎
  • 2021‎

Long intergenic noncoding RNAs (lincRNAs) are critical regulators involved in diverse biological processes. However, the roles and related mechanisms of lincRNAs in axon development are largely unknown. Here we report an axon-enriched lincRNA regulating axon elongation, referred to as ALAE. Profiling of highly expressed lincRNAs detected abundant and enriched ALAE in the axons of dorsal root ganglion (DRG) neurons, where it locally promoted axon elongation. Mechanically, ALAE directly interacted with the KH3-4 domains of KH-type splicing regulatory protein (KHSRP) and impeded its association with growth-associated protein 43 (Gap43) mRNA. Knockdown of ALAE reduced the protein but not the mRNA level of GAP43 in the axons of DRG neurons. Furthermore, local disruption of the interaction between ALAE and KHSRP in the axon significantly inhibited Gap43 mRNA translation, impairing axon elongation. This study implies crucial roles of axon-enriched lincRNAs in spatiotemporal regulation of local translation during axon development.


Bortezomib alleviates antibody-mediated rejection in kidney transplantation by facilitating Atg5 expression.

  • Hong Cheng‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Antibody-mediated rejection (AMR) is one of the most dominant mechanisms responsible for the loss of kidney grafts. Previous researches have shown that donor-specific antibodies (DSAs) are the major mediators of AMR. In order to prolong the survival time of grafts, it is vital to reduce the incidence of AMR and inhibit the generation of DSAs. We established an animal model of AMR by performing kidney transplantation in pre-sensitized rats. Then, we investigated the effect of bortezomib (BTZ) on AMR. We found that BTZ could reduce the serum level of DSAs and alleviate post-transplantation inflammation in peritubular capillaries (PTCs) and glomeruli, which was demonstrated by the reduction of C4d and IgG deposition in PTCs, and the reduced number of B cell and plasma cell in peripheral blood and the transplanted kidney (p < 0.05). Our results also suggested that BTZ increased the number of regulatory T cell (Treg) and significantly reduced the proportion of T helper (Th17) cell (p < 0.05). Besides, BTZ induced the significant upregulation of anti-inflammatory cytokines but downregulated pro-inflammatory cytokines (p < 0.05). After dealing with Atg5 siRNA-lentivirus, the effect of BTZ alleviating AMR was reversed and Th17/Treg proportions were also significantly modulated. Collectively, these findings show that BTZ slows down the process of AMR and Atg5 may be the key mechanism. Furthermore, Atg5 silencing results may be demonstrated that Atg5 alleviated AMR by modulating the ratio of Th17/Treg.


Msi2-mediated MiR7a-1 processing repression promotes myogenesis.

  • Wenjun Yang‎ et al.
  • Journal of cachexia, sarcopenia and muscle‎
  • 2022‎

Most of the microRNAs (MiRs) involved in myogenesis are transcriptional regulated. The role of MiR biogenesis in myogenesis has not been characterized yet. RNA-binding protein Musashi 2 (Msi2) is considered to be one of the major drivers for oncogenesis and stem cell proliferation. The functions of Msi2 in myogenesis have not been explored yet. We sought to investigate Msi2-regulated biogenesis of MiRs in myogenesis and muscle stem cell (MuSC) ageing.


Adequate 25-hydroxyvitamin D levels are inversely associated with various cardiometabolic risk factors in Chinese children, especially obese children.

  • Pei Xiao‎ et al.
  • BMJ open diabetes research & care‎
  • 2020‎

Vitamin D deficiency has recently evolved as a major public health issue worldwide. But the relationship between vitamin D and cardiovascular health in children remains unclear. Accordingly, we aimed to examine the associations between 25-hydroxyvitamin D (25(OH)D) concentrations and cardiometabolic risk factors, and to assess the possible effect modification of obesity on the associations in a Chinese pediatric population.


GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant breast cancer cells.

  • Tenghua Yu‎ et al.
  • Molecular and cellular endocrinology‎
  • 2020‎

Rescue chemotherapy is usually the preferred treatment for patients with advanced estrogen receptor-positive (ER+) breast cancer with endocrinotherapy resistance. However, these patients often simultaneously show a poor response to cytotoxic drugs, and thus the detailed mechanism of this resistance needs to be further investigated. Our previous research indicated that the G-protein-coupled estrogen receptor (GPER) is a novel mediator of the development of multidrug resistance, including resistance to both endocrinotherapy and chemotherapy, and ATP binding cassette subfamily G member 2 (ABCG2) has been identified as an engine that confers cancer cells with chemoresistance by expelling xenobiotics and chemotherapeutics. Here, we are the first to show that the expression levels of GPER and ABCG2 are markedly increased in tamoxifen-resistant ER + metastases compared to the corresponding primary tumors. A plasma membrane expression pattern of GPER and ABCG2 was observed in patients with metastases. Furthermore, both ER modulator tamoxifen, GPER-specific agonist G1 and pure ER antagonist ICI 182,780 significantly enhanced ABCG2 expression in tamoxifen-resistant breast cancer cells (MCF-7R) but not in tamoxifen-sensitive cells (MCF-7). The activated downstream GPER/EGFR/ERK and GPER/EGFR/AKT signaling pathways were responsible for regulating the expression and cell membrane localization of ABCG2, respectively, in MCF-7R cells. Interestingly, the above phenomenon could be alleviated by inhibitors of both the indicated signaling pathways and by knockdown of GPER in MCF-7R cells. More importantly, the tamoxifen-induced GPER/ABCG2 signaling axis was shown to play a pivotal role in the development of chemotherapy (doxorubicin) resistance both in vitro and in vivo. The clinical data further revealed that tamoxifen-resistant patients with high GPER/ABCG2 signaling activation had poor progression-free survival (PFS) when given rescue anthracycline chemotherapy. Therefore, our data provide novel insights into GPER-mediated chemoresistance and provide a rationale for the GPER/ABCG2 signaling axis being a promising target for reversing chemoresistance in patients with advanced ER + tamoxifen-resistant breast cancer.


Associations between manganese exposure and multiple immunological parameters in manganese-exposed workers healthy cohort.

  • Xiang Chen‎ et al.
  • Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS)‎
  • 2020‎

Manganese (Mn) ions play a crucial role in the immune response. The immunotoxicity of Mn is rarely reported compared with the neurotoxicity of Mn.


A Scientometric Review of Resource Recycling Industry.

  • Minxi Wang‎ et al.
  • International journal of environmental research and public health‎
  • 2019‎

With rapid economic development and urbanization, a large number of primary resources are consumed and accumulate in society as recyclable resource, which causes great pressure on the environment. The development of the resource recycling industry (RRI) can reduce environmental impacts and achieve sustainable development and green growth. Scholars are paying more attention to the resource recycling industry (RRI), and the related literature continues to increase. There are over 7041 publications covering RRI in the Web of Science database from 1996 to 2018. This paper analyzes the time distribution characteristics of the literature and the status of the scientific research cooperation network using the visualization analysis software CiteSpace. The number of documents increased from 94 in 1996 to a peak of 963 in 2018. There is no relatively stable core author group. The number of papers published by "Chinese Acad Sci" ranks first among all research institutions. Document co-citation analysis and burst detection are adopted to assess the status and emerging trends in the RRI research domain. A publication by M.C. Monte on waste management is the most cited paper. Additionally, "green and sustainable and technology" and "science and technology-other topics" are the latest emerging subject categories in RRI research. Furthermore, "e-waste", "reverse logistics" and "lean manufacturing" are emerging research trends for RRI, and "carbon emissions", "policy", "demolition waste", "supply chain management" and "compressive strength" have become hot topics. These findings may provide inspiration for scholars to search for new research directions and ideas.


Transcriptome analysis of microRNAs, circRNAs, and mRNAs in the dorsal root ganglia of paclitaxel-induced mice with neuropathic pain.

  • Qingxiang Mao‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2022‎

The microtubule-stabilizing drug paclitaxel (PTX) is a chemotherapeutic agent widely prescribed for the treatment of various tumor types. The main adverse effect of PTX-mediated therapy is chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain, which are similar to the adverse effects associated with other chemotherapeutic agents. Dorsal root ganglia (DRG) contain primary sensory neurons; any damage to these neurons or their axons may lead to neuropathic pain. To gain molecular and neurobiological insights into the peripheral sensory system under conditions of PTX-induced neuropathic pain, we used transcriptomic analysis to profile mRNA and non-coding RNA expression in the DRGs of adult male C57BL/6 mice treated using PTX. RNA sequencing and in-depth gene expression analysis were used to analyze the expression levels of 67,228 genes. We identified 372 differentially expressed genes (DEGs) in the DRGs of vehicle- and PTX-treated mice. Among the 372 DEGs, there were 8 mRNAs, 3 long non-coding RNAs (lncRNAs), 16 circular RNAs (circRNAs), and 345 microRNAs (miRNAs). Moreover, the changes in the expression levels of several miRNAs and circRNAs induced by PTX have been confirmed using the quantitative polymerase chain reaction method. In addition, we compared the expression levels of differentially expressed miRNAs and mRNA in the DRGs of mice with PTX-induced neuropathic pain against those evaluated in other models of neuropathic pain induced by other chemotherapeutic agents, nerve injury, or diabetes. There are dozens of shared differentially expressed miRNAs between PTX and diabetes, but only a few shared miRNAs between PTX and nerve injury. Meanwhile, there is no shared differentially expressed mRNA between PTX and nerve injury. In conclusion, herein, we show that treatment with PTX induced numerous changes in miRNA expression in DRGs. Comparison with other neuropathic pain models indicates that DEGs in DRGs vary greatly among different models of neuropathic pain.


The classical pathway triggers pathogenic complement activation in membranous nephropathy.

  • Larissa Seifert‎ et al.
  • Nature communications‎
  • 2023‎

Membranous nephropathy (MN) is an antibody-mediated autoimmune disease characterized by glomerular immune complexes containing complement components. However, both the initiation pathways and the pathogenic significance of complement activation in MN are poorly understood. Here, we show that components from all three complement pathways (alternative, classical and lectin) are found in renal biopsies from patients with MN. Proximity ligation assays to directly visualize complement assembly in the tissue reveal dominant activation via the classical pathway, with a close correlation to the degree of glomerular C1q-binding IgG subclasses. In an antigen-specific autoimmune mouse model of MN, glomerular damage and proteinuria are reduced in complement-deficient mice compared with wild-type littermates. Severe disease with progressive ascites, accompanied by extensive loss of the integral podocyte slit diaphragm proteins, nephrin and neph1, only occur in wild-type animals. Finally, targeted silencing of C3 using RNA interference after the onset of proteinuria significantly attenuates disease. Our study shows that, in MN, complement is primarily activated via the classical pathway and targeting complement components such as C3 may represent a promising therapeutic strategy.


SLC7A14 imports GABA to lysosomes and impairs hepatic insulin sensitivity via inhibiting mTORC2.

  • Xiaoxue Jiang‎ et al.
  • Cell reports‎
  • 2023‎

Lysosomal amino acid accumulation is implicated in several diseases, but its role in insulin resistance, the central mechanism to type 2 diabetes and many metabolic diseases, is unclear. In this study, we show the hepatic expression of lysosomal membrane protein solute carrier family 7 member 14 (SLC7A14) is increased in insulin-resistant mice. The promoting effect of SLC7A14 on insulin resistance is demonstrated by loss- and gain-of-function experiments. SLC7A14 is further demonstrated as a transporter resulting in the accumulation of lysosomal γ-aminobutyric acid (GABA), which induces insulin resistance via inhibiting mTOR complex 2 (mTORC2)'s activity. These results establish a causal link between lysosomal amino acids and insulin resistance and suggest that SLC7A14 inhibition may provide a therapeutic strategy in treating insulin resistance-related and GABA-related diseases and may provide insights into the upstream mechanisms for mTORC2, the master regulator in many important processes.


Glomerular Complement Factor H-Related Protein 5 is Associated with Histologic Injury in Immunoglobulin A Nephropathy.

  • Wei-Yi Guo‎ et al.
  • Kidney international reports‎
  • 2021‎

Immunoglobulin A nephrology (IgAN), characterized by co-deposition of IgA and complement components, is an activation of complement system involved disease. Factor H-related protein 5 (FHR-5) antagonized the ability of factor H to negatively regulate C3 activation, which leads to overactivation of the alternative pathway. Here we explore the relationship of intensity of glomerular FHR-5 deposition and severity of IgAN.


Oridonin prevents oxidative stress-induced endothelial injury via promoting Nrf-2 pathway in ischaemic stroke.

  • Lei Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2021‎

Oridonin, a natural diterpenoid compound extracted from a Chinese herb, has been proved to exert anti-oxidative stress effects in various disease models. The aim of the present study was to investigate the protective effects of oridonin on oxidative stress-induced endothelial injury in ischaemic stroke. We found oridonin repaired blood-brain barrier (BBB) integrity presented with upregulation of tight junction proteins (TJ proteins) expression, inhibited the infiltration of periphery inflammatory cells and neuroinflammation and thereby reduced infarct volume in ischaemic stroke mice. Furthermore, our results showed that oridonin could protect against oxidative stress-induced endothelial injury via promoting nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf-2). The specific mechanism could be the activation of AKT(Ser473)/GSK3β(Ser9)/Fyn signalling pathway. Our findings revealed the therapeutic effect and mechanism of oridonin in ischaemic stroke, which provided fundamental evidence for developing the extracted compound of Chinese herbal medicine into an innovative drug for ischaemic stroke treatment.


Exoskeleton-assisted walking improves pulmonary function and walking parameters among individuals with spinal cord injury: a randomized controlled pilot study.

  • Xiao-Na Xiang‎ et al.
  • Journal of neuroengineering and rehabilitation‎
  • 2021‎

Exoskeleton-assisted walking (EAW) is expected to improve the gait of spinal cord injury (SCI) individuals. However, few studies reported the changes of pulmonary function (PF) parameters after EAW trainings. Hence, we aimed to explore the effect of EAW on PF parameters, 6-min walk test (6MWT) and lower extremity motor score (LEMS) in individuals with SCI and to compare those with conventional trainings.


In-hospital acute kidney injury and atrial fibrillation: incidence, risk factors, and outcome.

  • Guoqin Wang‎ et al.
  • Renal failure‎
  • 2021‎

The incidence and the risk factors of in-hospitalized acute kidney injury (AKI) in patients hospitalized for atrial fibrillation (AF) were unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: