Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 81 papers

Deletion of CD73 increases exercise power in mice.

  • Aderbal S Aguiar‎ et al.
  • Purinergic signalling‎
  • 2021‎

Ecto-5'-nucleotidase or CD73 is the main source of extracellular adenosine involved in the activation of adenosine A2A receptors, responsible for the ergogenic effects of caffeine. We now investigated the role of CD73 in exercise by comparing female wild-type (WT) and CD73 knockout (KO) mice in a treadmill-graded test to evaluate running power, oxygen uptake (V̇O2), and respiratory exchange ratio (RER) - the gold standards characterizing physical performance. Spontaneous locomotion in the open field and submaximal running power and V̇O2 in the treadmill were similar between CD73-KO and WT mice; V̇O2max also demonstrated equivalent aerobic power, but CD73-KO mice displayed a 43.7 ± 4.2% larger critical power (large effect size, P < 0.05) and 3.8 ± 0.4% increase of maximum RER (small effect size, P < 0.05). Thus, KO of CD73 was ergogenic; i.e., it increased physical performance.


l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory.

  • Marlene F Pereira‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2021‎

Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.


Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse hippocampal slices.

  • Mara Yone D Fernandes‎ et al.
  • Scientific reports‎
  • 2021‎

The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 μM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 μM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to β-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.


CD73-Mediated Formation of Extracellular Adenosine Is Responsible for Adenosine A2A Receptor-Mediated Control of Fear Memory and Amygdala Plasticity.

  • Ana Patrícia Simões‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αβ-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 μM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 μM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.


Adenosine A2A Receptors Contribute to the Radial Migration of Cortical Projection Neurons through the Regulation of Neuronal Polarization and Axon Formation.

  • Sofia Alçada-Morais‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2021‎

Cortical interneurons born in the subpallium reach the cortex through tangential migration, whereas pyramidal cells reach their final position by radial migration. Purinergic signaling via P2Y1 receptors controls the migration of intermediate precursor cells from the ventricular zone to the subventricular zone. It was also reported that the blockade of A2A receptors (A2AR) controls the tangential migration of somatostatin+ interneurons. Here we found that A2AR control radial migration of cortical projection neurons. In A2AR-knockout (KO) mouse embryos or naïve mouse embryos exposed to an A2AR antagonist, we observed an accumulation of early-born migrating neurons in the lower intermediate zone at late embryogenesis. In utero knockdown of A2AR also caused an accumulation of neurons at the lower intermediate zone before birth. This entails the presently identified ability of A2AR to promote multipolar-bipolar transition and axon formation, critical for the transition of migrating neurons from the intermediate zone to the cortical plate. This effect seems to require extracellular ATP-derived adenosine since a similar accumulation of neurons at the lower intermediate zone was observed in mice lacking ecto-5'-nucleotidase (CD73-KO). These findings frame adenosine as a fine-tune regulator of the wiring of cortical inhibitory and excitatory networks.


Neuroprotective effects of melatonin against neurotoxicity induced by intranasal sodium dimethyldithiocarbamate administration in mice.

  • Josiel Mileno Mack‎ et al.
  • Neurotoxicology‎
  • 2020‎

Exposure to fungicide ziram (zinc dimethyldithiocarbamate) has been associated with increased incidence of Parkinson's disease (PD). We recently demonstrated that the intranasal (i.n.) administration of sodium dimethyldithiocarbamate (NaDMDC, a more soluble salt than ziram) induces PD-like behavioral and neurochemical alterations in mice. We now investigated the putative neuroprotective effects of melatonin on behavioral dificits and neurochemical alterations induced by i.n. NaDMDC. Melatonin treatment (3, 10 or 30 mg/kg, i.p.) was given 1 h before NaDMDC administration (1 mg/nostril) during 4 consecutive days and we evaluated early (up to 7 days) and late (up to 35 days) NaDMDC-induced behavioral and neurochemical alterations. Melatonin treatment protected against early motor and general neurological impairments observed in the open field and neurological score of severity, respectively, and late deficits in rotarod test. Melatonin prevented the NaDMDC-induced alterations in the striatal tyrosine hydroxylase immunocontent. Melatonin also protected against increased levels of oxidative stress markers (4-hydroxynonenal and 3-nitrotyrosine) in the striatum, as well as the NaDMDC-induced increase of 4-hydroxynonenal and TNF, markers of oxidative stress and inflammation, respectively, in the olfactory bulb. These results further detail the mechanisms underlying NaDMDC toxicity and demonstrate the neuroprotective effects of melatonin against the neuronal damage induced by NaDMDC.


Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors.

  • Mariana Temido-Ferreira‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.


Anandamide Effects in a Streptozotocin-Induced Alzheimer's Disease-Like Sporadic Dementia in Rats.

  • Daniel Moreira-Silva‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Alzheimer's disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss. The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation - one of the hallmarks of AD -, and on the density of synaptic proteins. Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ). Our hypothesis is that AEA could interact with HSP70, modulating the level of p-tau and synaptic proteins, preventing STZ-induced cognitive impairments. Thirty days after receiving bilateral icv injections of AEA or STZ or both, the cognitive performance of adult male Wistar rats was evaluated in the object recognition test, by the escape latency in the elevated plus maze (EPM), by the tone and context fear conditioning as well as in prepulse inhibition tests. Subsequently, the animals were euthanized and their brains were removed for histological analysis or for protein quantification by Western Blotting. The behavioral results showed that STZ impaired recognition, plus maze and tone fear memories but did not affect contextual fear memory and prepulse inhibition. Moreover, AEA prevented recognition and non-associative emotional memory impairments induced by STZ, but did not influence tone fear conditioning. STZ increased the brain ventricular area and this enlargement was prevented by AEA. Additionally, STZ reduced the levels of p-tau (Ser199/202) and increased p-tau (Ser396), although AEA did not affect these alterations. HSP70 was found diminished only by STZ, while BAG2 levels were decreased by STZ and AEA. Synaptophysin, syntaxin and CB1 receptor levels were reduced by STZ, but only syntaxin was recovered by AEA. Altogether, albeit AEA failed to modify some AD-like neurochemical alterations, it partially prevented STZ-induced cognitive impairments, changes in synaptic markers and ventricle enlargement. This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.


Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A2A receptor over-activation in a rat model of Parkinson's disease.

  • Marta Carmo‎ et al.
  • British journal of pharmacology‎
  • 2019‎

Parkinson's disease (PD) involves an initial loss of striatal dopamine terminals evolving into degeneration of dopamine neurons in substantia nigra (SN), which can be modelled by 6-hydroxydopamine (6-OHDA) administration. Adenosine A2A receptor blockade attenuates PD features in animal models, but the source of the adenosine causing A2A receptor over-activation is unknown. As ATP is a stress signal, we have tested if extracellular catabolism of adenine nucleotides into adenosine (through ecto-5'-nucleotidase or CD73) leads to A2A receptor over-activation in PD.


Parkinson's disease-associated GPR37 receptor regulates cocaine-mediated synaptic depression in corticostriatal synapses.

  • Daniel Rial‎ et al.
  • Neuroscience letters‎
  • 2017‎

GPR37 is an orphan G protein-coupled receptor highly expressed in the brain. The precise function of GPR37 is still unknown, but a number of evidences indicate it modulates the dopaminergic system. Here, we aimed to determine the role of GPR37 on the control of cocaine-mediated electrophysiological effects (synaptic transmission and short-term plasticity) in corticostriatal synapses. Accordingly, we evaluated basal synaptic transmission and paired-pulse stimulation (PPS) in wild-type and GPR37KO mice slices. Regardless of the genotype, a low concentration of cocaine (2μM) did not modify basal synaptic transmission. Conversely, a higher dose of cocaine (30μM) decreased synaptic transmission in both genotypes, although with different intensities: approximately 30% in slices from wild-type mice and 45% in slices from GPR37-KO mice. On the other hand, no differences in PPS ratio were observed between wild-type and GPR37-KO cocaine-treated mice. Overall, our data suggest that GPR37 is involved in cocaine-induced modification of basal synaptic transmission without modifying cocaine effects in short-term plasticity.


Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure.

  • Maria H Madeira‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a degenerative disease characterized by the loss of retinal ganglion cells (RGCs). There is clinical and experimental evidence that neuroinflammation is involved in the pathogenesis of glaucoma. Since the blockade of adenosine A2A receptor (A2AR) confers robust neuroprotection and controls microglia reactivity in the brain, we now investigated the ability of A2AR blockade to control the reactivity of microglia and neuroinflammation as well as RGC loss in retinal organotypic cultures exposed to elevated hydrostatic pressure (EHP) or lipopolysaccharide (LPS).


Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington's disease models.

  • Wei Li‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Cognitive impairments in Huntington's disease (HD) are attributed to a dysfunction of the cortico-striatal pathway and significantly affect the quality of life of the patients, but this has not been a therapeutic focus in HD to date. We postulated that adenosine A(2A) receptors (A(2A)R), located at pre- and post-synaptic elements of the cortico-striatal pathways, modulate striatal neurotransmission and synaptic plasticity and cognitive behaviors. To critically evaluate the ability of A(2A)R inactivation to prevent cognitive deficits in early HD, we cross-bred A(2A)R knockout (KO) mice with two R6/2 transgenic lines of HD (CAG120 and CAG240) to generate two double transgenic R6/2-CAG120-A(2A)R KO and R6/2-CAG240-A(2A)R KO mice and their corresponding wild-type (WT) littermates. Genetic inactivation of A(2A)R prevented working memory deficits induced by R6/2-CAG120 at post-natal week 6 and by R6/2-CAG240 at post-natal month 2 and post-natal month 3, without modifying motor deficits. Similarly the A2(A)R antagonist KW6002 selectively reverted working memory deficits in R6/2-CAG240 mice at post-natal month 3. The search for possible mechanisms indicated that the genetic inactivation of A(2A)R did not affect ubiquitin-positive neuronal inclusions, astrogliosis or Thr-75 phosphorylation of DARPP-32 in the striatum. Importantly, A(2A)R blockade preferentially controlled long-term depression at cortico-striatal synapses in R6/2-CAG240 at post-natal week 6. The reported reversal of working memory deficits in R6/2 mice by the genetic and pharmacological inactivation of A(2A)R provides a proof-of-principle for A(2A)R as novel targets to reverse cognitive deficits in HD, likely by controlling LTD deregulation.


Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease.

  • Shiraz Tyebji‎ et al.
  • Neurobiology of disease‎
  • 2015‎

Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease.


Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity.

  • Oscar P Dall'Igna‎ et al.
  • British journal of pharmacology‎
  • 2003‎

Adenosine is a neuromodulator in the nervous system and it has recently been observed that pharmacological blockade or gene disruption of adenosine A(2A) receptors confers neuroprotection under different neurotoxic situations in the brain. We now observed that coapplication of either caffeine (1-25 micro M) or the selective A(2A) receptor antagonist, 4-(2-[7-amino-2(2-furyl)(1,2,4)triazolo (2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol (ZM 241385, 50 nM), but not the A receptor antagonist, 8-cyclopentyltheophylline (200 nM), prevented the neuronal cell death caused by exposure of rat cultured cerebellar granule neurons to fragment 25-35 of beta-amyloid protein (25 micro M for 48 h), that by itself caused a near three-fold increase of propidium iodide-labeled cells. This constitutes the first in vitro evidence to suggest that adenosine A(2A) receptors may be the molecular target responsible for the observed beneficial effects of caffeine consumption in the development of Alzheimer's disease.


Different roles of adenosine A1, A2A and A3 receptors in controlling kainate-induced toxicity in cortical cultured neurons.

  • Nelson Rebola‎ et al.
  • Neurochemistry international‎
  • 2005‎

Adenosine is a neuromodulator that can control brain damage through activation of A(1), A(2A) and A(3) receptors, which are located in both neurons and other brain cells. We took advantage of cultured neurons to investigate the role of neuronal adenosine receptors in the control of neurotoxicity caused by kainate and cyclothiazide. Both A(1), A(2A) and A(3) receptors were immunocytochemically identified in cortical neurons. Activation of A(1) receptors with 100 nM CPA did not modify the extent of neuronal death whereas the A(1) receptor antagonist, DPCPX (50 nM), attenuated neurotoxicity by 28 +/- 5%, and effect similar to that resulting from the removal of endogenous adenosine with 2U/ml of adenosine deaminase (27 +/- 3% attenuation of neurotoxicity). In the presence of adenosine deaminase, DPCPX had no further effect and CPA now exacerbated neurotoxicity by 42 +/- 4%. Activation of A(2A) receptor with 30 nM CGS21680 attenuated neurotoxicity by 40 +/- 8%, an effect prevented by the A(2A) receptor antagonists, SCH58261 (50 nM) or ZM241385 (50 nM), which by themselves were devoid of effect. Finally, neither A(3) receptor activation with Cl-IB-MECA (100-500 nM) nor blockade with MRS1191 (5 microM) modified neurotoxicity. These results show that A(1) receptor activation enhances and A(2A) receptor activation attenuates neurotoxicity in cultured cortical neurons, indicating that these two neuronal adenosine receptors directly control neurodegeneration. Interestingly, the control by adenosine of neurotoxicity in cultured neurons is similar to that observed in vivo in newborn animals and is the opposite of what is observed in adult brain preparations where A(1) receptor activation and A(2A) receptor blockade are neuroprotective.


The Parkinson's disease-associated GPR37 receptor interacts with striatal adenosine A2A receptor controlling its cell surface expression and function in vivo.

  • Xavier Morató‎ et al.
  • Scientific reports‎
  • 2017‎

G protein-coupled receptor 37 (GPR37) is an orphan receptor associated to Parkinson's disease (PD) neuropathology. Here, we identified GPR37 as an inhibitor of adenosine A2A receptor (A2AR) cell surface expression and function in vivo. In addition, we showed that GPR37 and A2AR do oligomerize in the striatum. Thus, a close proximity of GPR37 and A2AR at the postsynaptic level of striatal synapses was observed by double-labelling post-embedding immunogold detection. Indeed, the direct receptor-receptor interaction was further substantiated by proximity ligation in situ assay. Interestingly, GPR37 deletion promoted striatal A2AR cell surface expression that correlated well with an increased A2AR agonist-mediated cAMP accumulation, both in primary striatal neurons and nerve terminals. Furthermore, GPR37-/- mice showed enhanced A2AR agonist-induced catalepsy and an increased response to A2AR antagonist-mediated locomotor activity. Overall, these results revealed a key role for GPR37 controlling A2AR biology in the striatum, which may be relevant for PD management.


Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus.

  • João M N Duarte‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning and memory deficits. Caffeine has been proposed to prevent memory impairment upon multiple chronic disorders with neurological involvement. We tested whether long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory impairment and hippocampal alterations, including synaptic degeneration, astrogliosis, and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose homeostasis were investigated by 1H magnetic resonance spectroscopy. The density of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis. GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of hippocampal long-term potentiation when compared to controls, suggesting impaired hippocampal-dependent spatial memory. Diabetes did not impact the relation of hippocampal to plasma glucose concentrations, but altered the neurochemical profile of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001) and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05) immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake on hippocampal metabolism added to those of T2D, namely reducing myo-inositol levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits. We conclude that caffeine consumption has beneficial effects counteracting alterations in the hippocampus of GK rats, leading to the improvement of T2D-associated memory impairment.


Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex.

  • Amber Kerkhofs‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

Caffeine is the most widely used psychoactive drug, bolstering attention and normalizing mood and cognition, all functions involving cerebral cortical circuits. Whereas studies in rodents showed that caffeine acts through the antagonism of inhibitory A1 adenosine receptors (A1R), neither the role of A1R nor the impact of caffeine on human cortical neurons is known. We here provide the first characterization of the impact of realistic concentrations of caffeine experienced by moderate coffee drinkers (50 μM) on excitability of pyramidal neurons and excitatory synaptic transmission in the human temporal cortex. Moderate concentrations of caffeine disinhibited several of the inhibitory A1R-mediated effects of adenosine, similar to previous observations in the rodent brain. Thus, caffeine restored the adenosine-induced decrease of both intrinsic membrane excitability and excitatory synaptic transmission in the human pyramidal neurons through antagonism of post-synaptic A1R. Indeed, the A1R-mediated effects of endogenous adenosine were more efficient to inhibit synaptic transmission than neuronal excitability. This was associated with a distinct affinity of caffeine for synaptic versus extra-synaptic human cortical A1R, probably resulting from a different molecular organization of A1R in human cortical synapses. These findings constitute the first neurophysiological description of the impact of caffeine on pyramidal neuron excitability and excitatory synaptic transmission in the human temporal cortex, providing adequate ground for the effects of caffeine on cognition in humans.


Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage.

  • Raquel Boia‎ et al.
  • Cell death & disease‎
  • 2017‎

Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia-reperfusion (I-R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I-R. The administration of KW6002 after I-R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I-R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I-R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.


Impact of blunting astrocyte activity on hippocampal synaptic plasticity in a mouse model of early Alzheimer's disease based on amyloid-β peptide exposure.

  • Cátia R Lopes‎ et al.
  • Journal of neurochemistry‎
  • 2022‎

Amyloid-β peptides (Aβ) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes' ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aβ1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aβ1-42 exposure were tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice, but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude, but reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aβ1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: