Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 49 papers out of 49 papers

Version 3 of the National Alzheimer's Coordinating Center's Uniform Data Set.

  • Lilah Besser‎ et al.
  • Alzheimer disease and associated disorders‎
  • 2018‎

In 2015, the US Alzheimer's Disease Centers (ADC) implemented Version 3 of the Uniform Data Set (UDS). This paper describes the history of Version 3 development and the UDS data that are freely available to researchers.


Mitochondrial Complex I Activity Is Required for Maximal Autophagy.

  • Hala Elnakat Thomas‎ et al.
  • Cell reports‎
  • 2018‎

Cells adapt to nutrient and energy deprivation by inducing autophagy, which is regulated by the mammalian target of rapamycin (mTOR) and AMP-activated protein kinases (AMPKs). We found that cell metabolism significantly influences the ability to induce autophagy, with mitochondrial complex I function being an important factor in the initiation, amplitude, and duration of the response. We show that phenformin or genetic defects in complex I suppressed autophagy induced by mTOR inhibitors, whereas autophagy was enhanced by strategies that increased mitochondrial metabolism. We report that mTOR inhibitors significantly increased select phospholipids and mitochondrial-associated membranes (MAMs) in a complex I-dependent manner. We attribute the complex I autophagy defect to the inability to increase MAMs, limiting phosphatidylserine decarboxylase (PISD) activity and mitochondrial phosphatidylethanolamine (mtPE), which support autophagy. Our data reveal the dynamic and metabolic regulation of autophagy.


The Prehistoric Indian Ayurvedic Rice Shashtika Is an Extant Early Domesticate With a Distinct Selection History.

  • Mariet Jose‎ et al.
  • Frontiers in plant science‎
  • 2018‎

Fully domesticated rice is considered to have emerged in India at approximately 2000 B.C., although its origin in India remains a contentious issue. The fast-growing 60-days rice strain described in the Vedic literature (1900-500 B.C.) and termed Shashtika (Sanskrit) or Njavara (Dravidian etymology) in Ayurveda texts including the seminal texts Charaka Samhita and Sushruta Samhita (circa 660-1000 B.C.) is a reliable extant strain among the numerous strains described in the Ayurveda literature. We here report the results of the phylogenetic analysis of Njavara accessions in relation to the cultivars belonging to the known ancestral sub-groups indica, japonica, aromatic, and aus in rice gene pool and the populations of the progenitor species Oryza rufipogon using genetic and gene genealogical methods. Based on neutral microsatellite markers, Njavara produced a major clade, which comprised of minor clades corresponding to the genotypic classes reported in Njavara germplasm, and was distinct from that were produced by the ancestral sub-groups. Further we performed a phylogenetic analysis using the combined sequence of 19 unlinked EST-based sequence tagged site (STS) loci with proven potential in inferring rice phylogeny. In the phylogenetic tree also the Njavara genotypic classes were clearly separated from the ancestral sub-groups. For most loci the genealogical analysis produced a high frequency central haplotype shared among most of the rice samples analyzed in the study including Njavara and a set of O. rufipogon accessions. The haplotypes sharing pattern with the progenitor O. rufipogon suggests a Central India-Southeast Asia origin for Njavara. Results signify that Njavara is genetically distinct in relation to the known ancestral sub-groups in rice. Further, from the phylogenetic features together with the reported morphological characteristics, it is likely that Njavara is an extant early domesticate in Indian rice gene pool, preserved in pure form over millennia by the traditional prudence in on-farm selection using 60-days maturity, because of its medicinal applications.


5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint.

  • Giulio Donati‎ et al.
  • Cell reports‎
  • 2013‎

Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.


Metabolic control by S6 kinases depends on dietary lipids.

  • Tamara R Castañeda‎ et al.
  • PloS one‎
  • 2012‎

Targeted deletion of S6 kinase (S6K) 1 in mice leads to higher energy expenditure and improved glucose metabolism. However, the molecular mechanisms controlling these effects remain to be fully elucidated. Here, we analyze the potential role of dietary lipids in regulating the mTORC1/S6K system. Analysis of S6K phosphorylation in vivo and in vitro showed that dietary lipids activate S6K, and this effect is not dependent upon amino acids. Comparison of male mice lacking S6K1 and 2 (S6K-dko) with wt controls showed that S6K-dko mice are protected against obesity and glucose intolerance induced by a high-fat diet. S6K-dko mice fed a high-fat diet had increased energy expenditure, improved glucose tolerance, lower fat mass gain, and changes in markers of lipid metabolism. Importantly, however, these metabolic phenotypes were dependent upon dietary lipids, with no such effects observed in S6K-dko mice fed a fat-free diet. These changes appear to be mediated via modulation of cellular metabolism in skeletal muscle, as shown by the expression of genes involved in energy metabolism. Taken together, our results suggest that the metabolic functions of S6K in vivo play a key role as a molecular interface connecting dietary lipids to the endogenous control of energy metabolism.


Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene.

  • Nara L M Sobreira‎ et al.
  • PLoS genetics‎
  • 2010‎

Although more than 2,400 genes have been shown to contain variants that cause Mendelian disease, there are still several thousand such diseases yet to be molecularly defined. The ability of new whole-genome sequencing technologies to rapidly indentify most of the genetic variants in any given genome opens an exciting opportunity to identify these disease genes. Here we sequenced the whole genome of a single patient with the dominant Mendelian disease, metachondromatosis (OMIM 156250), and used partial linkage data from her small family to focus our search for the responsible variant. In the proband, we identified an 11 bp deletion in exon four of PTPN11, which alters frame, results in premature translation termination, and co-segregates with the phenotype. In a second metachondromatosis family, we confirmed our result by identifying a nonsense mutation in exon 4 of PTPN11 that also co-segregates with the phenotype. Sequencing PTPN11 exon 4 in 469 controls showed no such protein truncating variants, supporting the pathogenicity of these two mutations. This combination of a new technology and a classical genetic approach provides a powerful strategy to discover the genes responsible for unexplained Mendelian disorders.


EPRS is a critical mTORC1-S6K1 effector that influences adiposity in mice.

  • Abul Arif‎ et al.
  • Nature‎
  • 2017‎

Metabolic pathways that contribute to adiposity and ageing are activated by the mammalian target of rapamycin complex 1 (mTORC1) and p70 ribosomal protein S6 kinase 1 (S6K1) axis. However, known mTORC1-S6K1 targets do not account for observed loss-of-function phenotypes, suggesting that there are additional downstream effectors of this pathway. Here we identify glutamyl-prolyl-tRNA synthetase (EPRS) as an mTORC1-S6K1 target that contributes to adiposity and ageing. Phosphorylation of EPRS at Ser999 by mTORC1-S6K1 induces its release from the aminoacyl tRNA multisynthetase complex, which is required for execution of noncanonical functions of EPRS beyond protein synthesis. To investigate the physiological function of EPRS phosphorylation, we generated Eprs knock-in mice bearing phospho-deficient Ser999-to-Ala (S999A) and phospho-mimetic (S999D) mutations. Homozygous S999A mice exhibited low body weight, reduced adipose tissue mass, and increased lifespan, similar to S6K1-deficient mice and mice with adipocyte-specific deficiency of raptor, an mTORC1 constituent. Substitution of the EprsS999D allele in S6K1-deficient mice normalized body mass and adiposity, indicating that EPRS phosphorylation mediates S6K1-dependent metabolic responses. In adipocytes, insulin stimulated S6K1-dependent EPRS phosphorylation and release from the multisynthetase complex. Interaction screening revealed that phospho-EPRS binds SLC27A1 (that is, fatty acid transport protein 1, FATP1), inducing its translocation to the plasma membrane and long-chain fatty acid uptake. Thus, EPRS and FATP1 are terminal mTORC1-S6K1 axis effectors that are critical for metabolic phenotypes.


Characterizing advanced breast cancer heterogeneity and treatment resistance through serial biopsies and comprehensive analytics.

  • Allen Li‎ et al.
  • NPJ precision oncology‎
  • 2021‎

Molecular heterogeneity in metastatic breast cancer presents multiple clinical challenges in accurately characterizing and treating the disease. Current diagnostic approaches offer limited ability to assess heterogeneity that exists among multiple metastatic lesions throughout the treatment course. We developed a precision oncology platform that combines serial biopsies, multi-omic analysis, longitudinal patient monitoring, and molecular tumor boards, with the goal of improving cancer management through enhanced understanding of the entire cancer ecosystem within each patient. We describe this integrative approach using comprehensive analytics generated from serial-biopsied lesions in a metastatic breast cancer patient. The serial biopsies identified remarkable heterogeneity among metastatic lesions that presented clinically as discordance in receptor status and genomic alterations with mixed treatment response. Based on our study, we highlight clinical scenarios, such as rapid progression or mixed response, that indicate consideration for repeat biopsies to evaluate intermetastatic heterogeneity (IMH), with the objective of refining targeted therapy. We present a framework for understanding the clinical significance of heterogeneity in breast cancer between metastatic lesions utilizing multi-omic analyses of serial biopsies and its implication for effective personalized treatment.


A compound directed against S6K1 hampers fat mass expansion and mitigates diet-induced hepatosteatosis.

  • Aina Lluch‎ et al.
  • JCI insight‎
  • 2022‎

The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: