Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 230 papers

Molecular Drug Simulation and Experimental Validation of the CD36 Receptor Competitively Binding to Long-Chain Fatty Acids by 7-Ketocholesteryl-9-carboxynonanoate.

  • Changzhen Fu‎ et al.
  • ACS omega‎
  • 2023‎

Long-chain fatty acids (LCFAs) are one of the main energy-supplying substances in the body. LCFAs with different lengths and saturations may have contrasting biological effects that exacerbate or alleviate progress against a variety of systemic disorders of lipid metabolism in organisms. Nonalcoholic fatty liver disease is characterized by chronic inflammation and steatosis, mainly caused by the ectopic accumulation of lipids in the liver, especially LCFAs. CD36 is a scavenger receptor that recognizes and mediates the transmembrane absorption of LCFAs and is expressed in a variety of cells throughout the body. In previous studies, our group found that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) has the biological effect of targeting CD36 to inhibit oxidized low-density lipoprotein lipotoxicity-induced lipid metabolism disorder; it has an ω-carboxyl physiologically active center and is structurally similar to LCFAs. However, the biological mechanism of oxLig-1 binding to CD36 and competing for binding to different types of LCFAs is still not clear. In this study, molecular docking and molecular dynamics simulation were utilized to simulate and analyze the binding activity between oxLig-1 and different types of LCFAs to CD36 and confirmed by the enzyme-linked immunosorbent assay (ELISA) method. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) platform was applied to predict the drug-forming properties of oxLig-1, and HepG2 cells model of oleic acid and nonalcoholic fatty liver disease (NAFLD) model mice were validated to verify the biological protection of oxLig-1 on lipid lowering. The results showed that there was a co-binding site of LCFAs and oxLig-1 on CD36, and the binding driving forces were mainly hydrogen bonding and hydrophobic interactions. The binding abilities of polyunsaturated LCFAs, oxLig-1, monounsaturated LCFAs, and saturated LCFAs to CD36 showed a decreasing trend in this order. There was a similar decreasing trend in the stability of the molecular dynamics simulation. ELISA results similarly confirmed that the binding activity of oxLig-1 to CD36 was significantly higher than that of typical monounsaturated and saturated LCFAs. ADMET prediction results indicated that oxLig-1 had a good drug-forming property. HepG2 cells model of oleic acid and NAFLD model mice study results demonstrated the favorable lipid-lowering biological effects of oxLig-1. Therefore, oxLig-1 may have a protective effect by targeting CD36 to inhibit the excessive influx and deposition of lipotoxicity monounsaturated LCFAs and saturated LCFAs in hepatocytes.


Drug-Carrying Capacity and Anticancer Effect of the Folic Acid- and Berberine-Loaded Silver Nanomaterial To Regulate the AKT-ERK Pathway in Breast Cancer.

  • Ramasamy Bhanumathi‎ et al.
  • ACS omega‎
  • 2018‎

Currently, in clinics, breast cancer is treated with free chemotherapeutic drugs, as a result there is not much therapeutic effect in treated models, leading to substantial systemic toxicity. To overcome these critical problems for the primary outcome, we developed the formulated nanomaterial (FA-PEG@BBR-AgNPs) aimed to specifically target cancer cells via nanoscopic-based drug delivery for getting better therapeutic effectiveness. In the present study, an isoquinoline alkaloid, berberine (BBR), was chosen as a cancer therapeutic agent, encapsulated on citrate-capped silver nanoparticles (AgNPs) through electrostatic interactions (BBR-AgNPs). Then, BBR-AgNPs were conjugated with polyethylene glycol-functionalized folic acid (FA-PEG) via hydrogen bonding interactions (FA-PEG@BBR-AgNPs). The transmission electron microscopy study shows the cellular invasion of the formulated FA-PEG@BBR-AgNPs, indicating the accretion of the nanomaterial at the tumor-specific site. Hence, FA conjugated with the nanomaterial suggests an efficient release of BBR molecules into the specific cancer site. Consequently, the results showed an increase in apoptotic induction via reactive oxygen species and condensed nuclei in cancer cells. Moreover, the western blotting analysis shows reduced/increased expression of PI3K, AKT, Ras, Raf, ERK, VEGF, HIF1α, Bcl-2, Bax, cytochrome c, caspase-9, and caspase-3, thereby enhancing apoptosis. Likewise, the in vivo antitumor efficiency of FA-PEG@BBR-AgNPs showed a significant restraint of tumor progression, and histopathological observations of lung, liver, kidney, heart, and brain tissues proved lesser toxicity of FA-PEG@BBR-AgNPs. Thus, the successfully formulated nanomaterial can serve as a potential drug-discharging vehicle to combat cancer cells by a molecular-based targeting approach.


Testing Possible Risk Factors for Idiosyncratic Drug-Induced Liver Injury Using an Amodiaquine Mouse Model and Co-treatment with 1-Methyl-d-Tryptophan or Acetaminophen.

  • Tiffany Cho‎ et al.
  • ACS omega‎
  • 2021‎

Idiosyncratic drug reactions are unpredictable adverse reactions. Although most such adverse reactions appear to be immune mediated, their exact mechanism(s) remain elusive. The idiosyncratic drug reaction most associated with serious consequences is idiosyncratic drug-induced liver injury (IDILI). We have developed a mouse model of amodiaquine (AQ)-induced liver injury that reflects the clinical characteristics of IDILI in humans. This was accomplished by impairing immune tolerance by using PD-1-/- mice and an antibody against CTLA-4. PD-1 and CTLA-4 are known negative regulators of lymphocyte activation, which promote immune tolerance. Immune checkpoint inhibitors have become important tools for the treatment of cancer. However, as in our model, immune checkpoint inhibitors increase the risk of IDILI with drugs that have an incidence of causing liver injury. Agents such as 1-methyl-d-tryptophan (D-1-MT), an inhibitor of the immunosuppressive indoleamine 2,3-dioxygenase (IDO) enzyme, have also been proposed as anti-cancer treatments. Another possible risk factor for the induction of an immune response is the release of danger-associated molecular patterns (DAMPs). Acetaminophen (APAP) is known to cause acute liver injury, and it is likely to cause the release of DAMPs. Therefore, either of these agents could increase the risk of IDILI, although through different mechanisms. If true, then this would have clinical implications. We found that co-treatment with D-1-MT paradoxically decreased liver injury in our model, and although APAP appeared to slightly increase AQ-induced liver injury, the difference was not significant. Such results highlight the complexity of the immune response, which makes potential interactions difficult to predict.


Counterpointing Scenarios on the Fate of Different Prototropic Forms of Norfloxacin Housed in the Pocket of Lysozyme: The Nonelectrostatic Interactions in the Protein Interior Are in the Controlling Role on the Prototropic Equilibria of the Guest.

  • Ishita Das‎ et al.
  • ACS omega‎
  • 2017‎

Herein, we report a comprehensive study on the interaction of three protomeric forms of the antibacterial drug norfloxacin (nfx) with the enzymatic protein human lysozyme (lyz). Norfloxacin, having the option for two-stage acid-base equilibria, converts from cationic (nfx+) to zwitterionic (nfx±) form, followed by an anionic (nfx-) species, with increasing pH. Among these protomeric forms, lysozyme binds nfx± most robustly, whereas nfx- has a weak association and nfx+ does not show any interaction. In lysozyme, the location of the drug was ascertained by competitive binding assay with 8-anilino-1-naphthalenesulfonate, and this was further examined with molecular docking simulation. The binding process was found to be primarily governed by hydrogen bonding and van der Waals interactions. The study has further revealed that preferential binding of nfx± by the protein over nfx- led to a switchover of nfx- to nfx±; and the resulting increased population of nfx± over the other is beneficial for the pharmacological activity of the drug in terms of its accumulation in the target bacterial cells. The present study accomplishes two important objectives. It holds significance regarding the differential interaction of multiprotomeric drugs with biomolecules, such as proteins, enzymes, lipid membranes, etc., and also on such biomolecule-assisted alteration of the acid-base equilibrium and consequent bioavailability of the drug. The findings are useful from the viewpoints of dispensation, distribution, and metabolism of any prototropic drug in living systems as they encounter several biomolecules in vivo. Another importance of this work stems from the study of comparative binding responses of lysozyme toward a drug existing in multiple forms depending on its protonation states or some other chemical processes.


Structural and Thermodynamic Basis of the Enhanced Interaction between Kinesin Spindle Protein Eg5 and STLC-type Inhibitors.

  • Hideshi Yokoyama‎ et al.
  • ACS omega‎
  • 2018‎

For a better understanding of protein-inhibitor interactions, we report structural, thermodynamic, and biological analyses of the interactions between S-trityl-l-cysteine (STLC) derivatives and the motor domain of kinesin spindle protein Eg5. Binding of STLC-type inhibitors to Eg5 was enthalpically driven and entropically unfavorable. The introduction of a para-methoxy substituent in one phenyl ring of STLC enhances its inhibitory activity resulting from a larger enthalpy gain possibly due to the increased shape complementarity. The substituent fits to a recess in the binding pocket. To avoid steric hindrance, the substituted STLC is nudged toward the side opposite to the recess, which enhances the interaction of Eg5 with the remaining part of the inhibitor. Further introduction of an ethylene linkage between two phenyl rings enhances Eg5 inhibitory activity by reducing the loss of entropy in forming the complex. This study provides valuable examples of enhancing protein-inhibitor interactions without forming additional hydrogen bonds.


Rationalizing the Formation of Activity Cliffs in Different Compound Data Sets.

  • Huabin Hu‎ et al.
  • ACS omega‎
  • 2018‎

Activity cliffs are formed by structurally analogous compounds with large potency variations and are highly relevant for the exploration of discontinuous structure-activity relationships and compound optimization. So far, activity cliffs have mostly been studied on a case-by-case basis or assessed by global statistical analysis. Different from previous investigations, we report a large-scale analysis of activity cliff formation with a strong focus on individual compound activity classes (target sets). Compound potency distributions were systematically analyzed and categorized, and structural relationships were dissected and visualized on a per-set basis. Our study uncovered target set-dependent interplay of potency distributions and structural relationships and revealed the presence of activity cliffs and origins of cliff formation in different structure-activity relationship environments.


Study on the Mechanism of the Danggui-Chuanxiong Herb Pair on Treating Thrombus through Network Pharmacology and Zebrafish Models.

  • Mengqi Zhang‎ et al.
  • ACS omega‎
  • 2021‎

Danggui-Chuanxiong (DC) is a commonly used nourishing and activating blood medicine pair in many gynecological prescriptions and modern Chinese medicine. However, its activating blood mechanism has not been clearly elucidated. Our research aimed at investigating the activating blood mechanisms of DC using network pharmacology and zebrafish experiments. Network pharmacology was used to excavate the potential targets and mechanisms of DC in treating thrombus. The antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities of DC and the main components of DC, ferulic acid (DC2), ligustilide (DC7), and levistilide A (DC17), were evaluated by zebrafish models in vivo. A total of 24 compounds were selected as the active ingredients with favorable pharmacological parameters for this herb pair. A total of 89 targets and 18 pathways related to the thrombus process were gathered for active compounds. The genes, TNF, CXCR4, IL2, ESR1, FGF2, HIF1A, CXCL8, AR, FOS, MMP2, MMP9, STAT3, and RHOA, might be the main targets for this herb pair to exert cardiovascular activity from the analysis of protein-protein interaction and KEGG pathway results, which were mainly related to inflammation, vasculogenesis, immunity, hormones, and so forth. The zebrafish experiment results showed that DC had antithrombotic, anti-inflammatory, antioxidant, and vasculogenesis activities. The main compounds had different effects of zebrafish activities. Especially, the antithrombotic activity of the DC17H group, anti-inflammatory activities of DCH and DC2H groups, antioxidant activities of DCM, DCH, DC2, DC7, and DC17 groups, and vasculogenesis activities of DCM, DCH, and DC2 groups were stronger than those of the positive group. The integrated method coupled zebrafish models with network pharmacology provided the insights into the mechanisms of DC in treating thrombus.


Discovery and Optimization of Highly Potent and Selective AT2R Antagonists to Relieve Peripheral Neuropathic Pain.

  • Yanghui Guo‎ et al.
  • ACS omega‎
  • 2021‎

The angiotensin II type 2 receptor (AT2R) has attracted much attention as a potential target for the relief of neuropathic pain, which represents an area of unmet clinical need. A series of 1,2,3,4-tetrahydroisoquinolines with a benzoxazole side-chain were discovered as potent AT2R antagonists. Rational optimization resulted in compound 15, which demonstrated both excellent antagonistic activity against AT2R in vitro and analgesic efficacy in a rat chronic constriction injury model. Its favorable physicochemical properties and oral bioavailability make it a promising therapeutic candidate for neuropathic pain.


Encapsulation and Enhanced Delivery of Topoisomerase I Inhibitors in Functionalized Carbon Nanotubes.

  • Sieun Chae‎ et al.
  • ACS omega‎
  • 2018‎

The topoisomerase I inhibitors SN-38 and camptothecin (CPT) have shown potent anticancer activity, but water insolubility and metabolic instability limits their clinical application. Utilizing carbon nanotubes as a protective shell for water-insoluble SN-38 and CPT while maintaining compatibility with aqueous media via a carboxylic acid-functionalized surface can thus be a strategy to overcome this limitation. Through hydrophobic-hydrophobic interactions, SN-38 and CPT were successfully encapsulated in carboxylic acid functionalized single-walled carbon nanotubes and dispersed in water. The resulting cell proliferation inhibition and drug distribution profile inside the cells suggest that these drug-encapsulated carbon nanotubes can serve as a promising delivery strategy for water-insoluble anticancer drugs.


Therapeutic Targeting of Repurposed Anticancer Drugs in Alzheimer's Disease: Using the Multiomics Approach.

  • Dia Advani‎ et al.
  • ACS omega‎
  • 2021‎

The complexity and heterogeneity of multiple pathological features make Alzheimer's disease (AD) a major culprit to global health. Drug repurposing is an inexpensive and reliable approach to redirect the existing drugs for new indications. The current study aims to study the possibility of repurposing approved anticancer drugs for AD treatment. We proposed an in silico pipeline based on "omics" data mining that combines genomics, transcriptomics, and metabolomics studies. We aimed to validate the neuroprotective properties of repurposed drugs and to identify the possible mechanism of action of the proposed drugs in AD.


Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations.

  • Bryce K Allen‎ et al.
  • ACS omega‎
  • 2017‎

Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein-ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein-ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors.


Molecular Dynamics Study of Conformational Changes of Tankyrase 2 Binding Subsites upon Ligand Binding.

  • Yoshinori Hirano‎ et al.
  • ACS omega‎
  • 2021‎

The interactions between proteins and ligands are involved in various biological functions. While experimental structures provide key static structural information of ligand-unbound and ligand-bound proteins, dynamic information is often insufficient for understanding the detailed mechanism of protein-ligand binding. Here, we studied the conformational changes of the tankyrase 2 binding pocket upon ligand binding using molecular dynamics simulations of the ligand-unbound and ligand-bound proteins. The ligand-binding pocket has two subsites: the nicotinamide and adenosine subsite. Comparative analysis of these molecular dynamics trajectories revealed that the conformational change of the ligand-binding pocket was characterized by four distinct conformations of the ligand-binding pocket. Two of the four conformations were observed only in molecular dynamics simulations. We found that the pocket conformational change on ligand binding was based on the connection between the nicotinamide and adenosine subsites that are located adjacently in the pocket. From the analysis, we proposed the protein-ligand binding mechanism of tankyrase 2. Finally, we discussed the computational prediction of the ligand binding pose using the tankyrase 2 structures obtained from the molecular dynamics simulations.


Synthesis and Biological Evaluation of Arylamide Sulphonate Derivatives as Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 and -3 Inhibitors.

  • Saif Ullah‎ et al.
  • ACS omega‎
  • 2022‎

Aberrant level of ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 is linked with numerous disorders, for instance, diabetes, cancer, osteoarthritis, chondrocalcinosis, and allergic reactions. These disorders may be cured or minimized by blocking the activity of ENPP1 and ENPP3 isozymes. In this study, arylamide sulphonates were synthesized, characterized, and evaluated for their capability to affect the activity of isozymes ENPP1 and ENPP3. Among the selective inhibitors of ENPP1, compounds 4f and 4q exhibited sub-micromolar IC50 values of 0.28 ± 0.08 and 0.37 ± 0.03 μM, respectively, followed by 7a, with IC50 equal to 0.81 ± 0.05 μM, whereas out of the selective inhibitors of isozyme ENPP3, 4t and 7d preferably lessened the activity to half of the maximal inhibitory concentration of 0.15 ± 0.04 and 0.16 ± 0.01 μM alternatively. In addition, many structures including 4c, 4g, 4k, 4l, 4n, 4o, 4r, 4s, 7b, 7c, and 7e inhibited the activity of both isozymes to a significant level. Enzyme kinetic study of compound 4j revealed an uncompetitive mode of inhibition of ENPP1 isozyme, while 7e competitively blocked the activity of ENPP3. Cell viability analysis revealed the compound 4o as a cytotoxic agent against MCF7 (human breast cancer cell line) with a percentage inhibition of 63.2 ± 2.51%, whereas compounds 4c, 4d, 4n, and 7d decreased the HeLa cell viability (human cervical cancer cell line) to more than 50%. The tested compounds were non-cytotoxic against HEK293 (a human embryonic kidney cell line). Molecular docking analysis of selected inhibitors of both isozymes produced optimistic interactions with the influential amino acids, such as Leu290, Lys295, Tyr340, Asp376, His380, and Pro323 of ENPP1, whereas residues Asn226, His329, Leu239, Tyr289, Pro272, Tyr320, and Ala205 of ENPP3 crystallographic structure formed interactions with the potent inhibitors.


Targeting of a Photosensitizer to the Mitochondrion Enhances the Potency of Photodynamic Therapy.

  • Sakkarapalayam M Mahalingam‎ et al.
  • ACS omega‎
  • 2018‎

Photodynamic therapy (PDT) involves use of a photosensitizer, whose activation with light leads to the production of singlet oxygen (SOS), generation of reactive oxygen species (ROS), and initiation of associated cell toxicity. Because a cell's mitochondria constitute sites where oxygen levels are high, ROS can be readily produced, and apoptosis is commonly initiated. Therefore, an ideal PDT agent might be a potent photosensitizer that could naturally accumulate in mitochondria. Although a number of mitochondria-targeting moieties, including triphenylphosphine, guanidinium, and bisguanidium, have been identified, a quantitative comparison of their efficacies in targeting mitochondria has not been performed. In this study, we have prepared triphenylphosphine, guanidinium, and bisguanidium derivatives of the FDA-approved PDT agent verteporfin (Visudyne, benzoporphyrin derivative-monoacid ring A: BPD-MA) and compared their abilities to induce the intracellular perturbations common to potent PDT agents. Cellular parameters examined included subcellular localization of the verteporfin, real-time monitoring of SOS production, quantitation of reactive oxygen species (ROS) generation, analysis of mitochondria and chromatin integrity, characterization of cytoskeletal disruption and evaluation of cytochrome C release as a measure of apoptosis. An analysis of these parameters demonstrates that the triphenylphosphine derivative (0323) has better mitochondria-targeting efficacy, SOS production, and mitochondria membrane toxicity than either unmodified verteporfin or its guanidinium derivatives. Consistent with this potency, 0323 also induced the most prominent mitochondria swelling, actin depolymerization, pyknosis, and cytochrome C release. We conclude that triphenylphosphine has a better mitochondria-targeting moiety than guanidinium or bis-guanidinium and those PDT photosensitizers with improved cytotoxicities can be prepared by conjugating a mitochondria-targeting moiety to the desired photosensitizer.


Metabolites of Vinca Alkaloid Vinblastine: Tubulin Binding and Activation of Nausea-Associated Receptors.

  • Caroline Manto Chagas‎ et al.
  • ACS omega‎
  • 2019‎

Vinblastine (VLB) is an antimitotic drug that binds to the vinca site of tubulin. The molecule possesses a high molecular weight and a complex chemical structure with many possibilities of metabolization. Despite advances in drug discovery research in reducing drug toxicity, the cause and mechanism of VLB-induced adverse drug reactions (ADRs) remains poorly understood. VLB is metabolized to at least 35 known metabolites, which have been identified and collected in this present work. This study also explores how VLB metabolites affect nausea-associated receptors such as muscarinic, dopaminergic, and histaminic. The metabolites have stronger binding interactions than acetylcholine (ACh) for muscarinic M1, M4, and M5 receptors and demonstrate similar binding profiles to that of the natural substrate, ACh. The affinities of VLB metabolites to dopaminergic and histaminic receptors, their absorption, distribution, metabolism, excretion, toxicity properties, and the superiority of VLB to ACh for binding to M5R, indicate their potential to trigger activation of nausea-associated receptors during chemotherapy with VLB. It has been shown that metabolite 20-hydroxy-VLB (metabolite 10) demonstrates a stronger binding affinity to the vinca site of tubulin than VLB; however, they have similar modes of action. VLB and metabolite 10 have similar gastric solubility (FaSSGF), intestinal solubility (FeSSIF), and log P values. Metabolite 10 has a more acceptable pharmacokinetic profile than VLB, a better gastric and intestinal solubility. Furthermore, metabolite 10 was found to be less bound to plasma proteins than VLB. These are desired and essential features for effective drug bioavailability. Metabolite 10 is not a substrate of CYP2D6 and thus is less likely to cause drug-drug interactions and ADRs compared to its parent drug. The hydroxyl group added upon metabolism of VLB suggests that it can also be a reasonable starting compound for designing the next generation of antimitotic drugs to overcome P-glycoprotein-mediated multidrug resistance, which is often observed with vinca alkaloids.


Synthesis and Evaluation of Amide and Thiourea Derivatives as Carbonic Anhydrase (CA) Inhibitors.

  • Zahid Hussain‎ et al.
  • ACS omega‎
  • 2022‎

Series of sulfonamide-substituted amide (9-11), benzamide (12-15), and 1,3-disubstituted thiourea (17-26) derivatives were synthesized from a common precursor, i.e., substituted benzoyl chlorides. Structures of all of the synthesized compounds were characterized by spectroscopic techniques (1H nuclear magnetic resonance (NMR),13C NMR, and Fourier transform infrared spectroscopy (FTIR)). All of the amide (9-15) and thiourea (17-26) derivatives were screened against human carbonic anhydrases, hCA-II, hCA IX, and hCA-XII. Sulfonamide-substituted amides 9, 11, and 12 were found to be excellent selective inhibitors with IC50 values of 0.18 ± 0.05, 0.17 ± 0.05, and 0.58 ± 0.05 μM against hCA II, hCA IX, and hCA XII, respectively. Compound 9 was found to be highly selective for hCA II and about 6-fold more potent as compared to the standard antagonist, acetazolamide. Safe toxicity profiling of the most potent and selective compounds was determined against normal BHK-21 and HEK-293 T cells. Molecular docking studies were performed, which described the type of interactions between the synthesized compounds and enzyme proteins. In addition, in silico absorption, distribution, metabolism, and excretion (ADME) studies were performed, which showed that all of the synthesized molecules fulfilled the druggability criteria.


Exploring Selectivity of Multikinase Inhibitors across the Human Kinome.

  • Filip Miljković‎ et al.
  • ACS omega‎
  • 2018‎

Selectivity of kinase inhibitors, or the lack thereof, continues to be an intensely debated topic in drug discovery research. Especially, type I inhibitors, which represent most of the currently available kinase inhibitors, are often thought to lack selectivity because they target the largely conserved adenosine triphosphate-binding site in kinases. Herein, we present a large-scale analysis of potential selectivity among multikinase inhibitors, covering 141 human kinases and more than 10 000 qualifying compounds. By design, the analysis was focused on type I inhibitors and carried out at the level of systematically generated kinase pairs sharing inhibitors. Kinase pair category- and compound-based selectivity profiles identified in part highly selective inhibitors for many kinases. Sets of inhibitors associated with kinase pairs frequently contained nonselective as well as increasingly selective compounds. Selectivity of inhibitors did not result from gatekeeper residues settings or phylogenetic distance of kinases. Rather, it was most likely attributable to subtle differences between binding regions in kinases. Taken together, the results of our study reveal that many multikinase inhibitors are more selective than one might assume.


Discovery of Dihydropyrrol-2-ones as Novel G0/G1-Phase Arresting Agents Inducing Apoptosis.

  • Danni Yang‎ et al.
  • ACS omega‎
  • 2019‎

A series of dihydropyrrol-2-ones (DHPs) were designed and synthesized via an efficient multicomponent reaction at room temperature for evaluation of their bioactivities against four human cancer lines (MCF-7, RKO, HeLa, and A549) in vitro. Preliminary structure-activity relationship studies showed that R4 = 3-MeO-4-OH-Ph is a crucial group for increasing cytotoxicities against RKO cells and the influences of R1-R3 depend on their combination. It was found that DHPs 5a, 5q, and 5s showed the best antiproliferative activities against A549, RKO, and all four studied cell lines, respectively (IC50 = 1.9, 0.8, and 0.9-2.4 μM). They can be used as new lead compounds for developing potentially selective or broad spectrum anticancer agents. 5q proves as a potent G0/G1-phase arresting agent inducing cell apoptosis by increasing/decreasing the levels of p53 and p21/cyclin D1.


Mutation in Transmembrane Domain 8 of Human Urate Transporter 1 Disrupts Uric Acid Recognition and Transport.

  • Qunsheng Lan‎ et al.
  • ACS omega‎
  • 2022‎

Human urate transporter 1 (hURAT1) is the most pivotal therapeutic target for hyperuricemia. Due to a lack of crystal structure information, the atomic structure of URAT1 is not clearly understood. In this study, a multiple sequence alignment was performed, and K393, a positively charged residue in transmembrane domain (TMD) 8, was observed to be highly conserved in organic anion transporters (OATs). K393 was substituted with a positively, negatively, and neutrally charged amino acid via site-directed mutagenesis and then used to transfect HEK293 cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analyses indicated that mutants of K393 showed mRNA and protein expression levels similar to those in the WT group. The nonpositively charged mutants K393A, K393D, and K393E eliminated 70-80% of 14C-uric acid transport capacity, while the K393H mutant showed slight and the K393R mutant showed no reduced transport capacity compared with the WT group. Binding assays indicated that K393A, K393D, and K393E conferred lowered uric acid binding affinity. As indicated by the K m and V max values obtained from saturation kinetic experiments, K393A, K393D, and K393E showed increased K m values, but K393R and K393H showed K m values similar to those in the WT group. K393 also contributed to a high affinity for benzbromarone (BM) interaction. The inhibitory effects of BM were partly abolished in K393 mutants, with increased IC50 values compared with the WT group. BM also exhibited weaker inhibitory effects on 14C-uric acid binding in K393R and K393H mutants. In an outward homology model of URAT1, K393 was located in the inner part of the transport tunnel, and further molecular docking analysis indicated that uric acid and BM showed possible hydrogen bonds with K393. Mutants K393R and K393H showed possible interactions with uric acid, and positive charges confer high affinity for uric acid as revealed by their surface electrostatic potential. In conclusion, our data provide evidence that K393 is an important residue for the recognition of uric acid or inhibitors by URAT1.


Secondary Structure-Dependent Physicochemical Interaction of Oligonucleotides with Gold Nanorod and Photothermal Effect for Future Applications: A New Insight.

  • Upasana Das‎ et al.
  • ACS omega‎
  • 2018‎

We investigate the physicochemical interactions of gold nanorod (GNR) with single-stranded, double-stranded, and hairpin DNA structures to improve the biological compatibility as well as the therapeutic potential, including the photothermal effect of the conjugates. Studies have demonstrated that different DNA secondary structures, containing thiol group, have different patterns of physicochemical interaction. Conjugation efficiency of paired oligonucleotides are significantly higher than that of oligonucleotides with naked bases. Furthermore, hairpin-shaped DNA structures are most efficient in terms of conjugation and increased dispersion, with least interference on GNR near-infrared absorbance and photothermal effect. Our conjugation method can successfully exchange the overall coating of the GNR, attaching the maximum number of DNA molecules, thus far reported. Chemical mapping depicted uniform attachment of thiolated DNA molecules without any topological preference on the GNR surface. Hairpin DNA-coated GNR are suitable for intracellular uptake and remain dispersed in the cellular environment. Finally, we conjugated GNR with 5-fluoro-2'-deoxyuridine-containing DNA hairpin and the conjugate demonstrated significant cytotoxic activity against human cervical cancer cell line (KB). Thus, hairpin DNA structures could be utilized for optimal dispersion and photothermal effect of GNR, along with the delivery of cytotoxic nucleotides, developing the concept of multimodality approach.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: