Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 665 papers

High urea induces depression and LTP impairment through mTOR signalling suppression caused by carbamylation.

  • Hongkai Wang‎ et al.
  • EBioMedicine‎
  • 2019‎

Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models.


Preoperative CT Radiomics Predicting the SSIGN Risk Groups in Patients With Clear Cell Renal Cell Carcinoma: Development and Multicenter Validation.

  • Yi Jiang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Objective: The stage, size, grade, and necrosis (SSIGN) score can facilitate the assessment of tumor aggressiveness and the personal management for patients with clear cell renal cell carcinoma (ccRCC). However, this score is only available after the postoperative pathological evaluation. The aim of this study was to develop and validate a CT radiomic signature for the preoperative prediction of SSIGN risk groups in patients with ccRCC in multicenters. Methods: In total, 330 patients with ccRCC from three centers were classified into the training, external validation 1, and external validation 2 cohorts. Through consistent analysis and the least absolute shrinkage and selection operator, a radiomic signature was developed to predict the SSIGN low-risk group (scores 0-3) and intermediate- to high-risk group (score ≥ 4). An image feature model was developed according to the independent image features, and a fusion model was constructed integrating the radiomic signature and the independent image features. Furthermore, the predictive performance of the above models for the SSIGN risk groups was evaluated with regard to their discrimination, calibration, and clinical usefulness. Results: A radiomic signature consisting of sixteen relevant features from the nephrographic phase CT images achieved a good calibration (all Hosmer-Lemeshow p > 0.05) and favorable prediction efficacy in the training cohort [area under the curve (AUC): 0.940, 95% confidence interval (CI): 0.884-0.973] and in the external validation cohorts (AUC: 0.876, 95% CI: 0.811-0.942; AUC: 0.928, 95% CI: 0.844-0.975, respectively). The radiomic signature performed better than the image feature model constructed by intra-tumoral vessels (all p < 0.05) and showed similar performance with the fusion model integrating radiomic signature and intra-tumoral vessels (all p > 0.05) in terms of the discrimination in all cohorts. Moreover, the decision curve analysis verified the clinical utility of the radiomic signature in both external cohorts. Conclusion: Radiomic signature could be used as a promising non-invasive tool to predict SSIGN risk groups and to facilitate preoperative clinical decision-making for patients with ccRCC.


Complement C3 deficiency ameliorates aging related changes in the kidney.

  • Xiaoting Wu‎ et al.
  • Life sciences‎
  • 2020‎

Complement C3 (C3) has been shown to be involved in the aging process. However, the role of C3 in kidney aging has not been fully elucidated. This study aimed to investigate the effect of C3 on senescence related kidney disorders in mice.


Knockdown of lncRNA-PANDAR suppresses the proliferation, cell cycle and promotes apoptosis in thyroid cancer cells.

  • Zhirong Li‎ et al.
  • EXCLI journal‎
  • 2017‎

Long non-coding RNAs (lncRNAs) have been found to show important regulatory roles in various human cancers. Lnc-RNA PANDAR is a novel identified lncRNA that was previously reported to show abnormal expression pattern in various cancers. However, little is known of its expression and biological function in thyroid cancer. Here, we used the quantitative real-time PCR (qRT-PCR) to determine the expression of PANDAR in 64 thyroid cancer tissues. We found that expression of PANDAR was up-regulated in thyroid cancer tissues compared with adjacent non-tumor tissues. Functional assays in vitro demonstrated that knockdown of PANDAR could inhibit proliferation, cell cycle progression, induces the apoptosis, inhibit invasion of thyroid cancer cells. Thus, our study provides evidence that PANDAR may function as a potential target for treatment for patients with thyroid cancer.


Nab-Paclitaxel in combination with Cisplatin Versus Docetaxel Plus Cisplatin as First-Line Therapy in Non-small Cell Lung Cancer.

  • Yi Chen‎ et al.
  • Scientific reports‎
  • 2017‎

Albumin-bound paclitaxel (nab-PC) and docetaxel both produced favorable efficacy and safety as first-line therapy in advanced non-small cell lung cancer (NSCLC). However, the comparison between nab-PC and docetaxel remained unclear until now. This retrospective study aimed to compare the efficacy and safety of nab-PC/cisplatin with docetaxel/cisplatin as first-line therapy in advanced NSCLC. 271 patients with advanced NSCLC, who received either nab-PC (55 patients) or docetaxel (216 patients) were reviewed from 2012 to 2016. The primary endpoint was objective overall response rate (ORR). The secondary endpoints were disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety profiles. Nab-PC presented a significantly higher ORR than docetaxel (47.3% vs 31.9%; P = 0.033). The difference of ORR was more significantly remarkable in patients with squamous histology (58.3% vs 29.0%; P = 0.007). Additionally, the DCR of nab-PC was significantly higher than docetaxel. Patients in nab-PC group had a trend toward improved PFS and OS compared with patients in docetaxel group, but this didn't reach statistical significance. Grade ≥ 3 neutropenia was less in nab-PC group, while Grade ≥ 3 anemia and thrombocytopenia were less in docetaxel group. Nab-PC/cisplatin as first-line therapy, produced significantly higher efficacy and reduced neutropenia than docetaxel/cisplatin in advanced NSCLC.


LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer.

  • Fei Teng‎ et al.
  • Molecular oncology‎
  • 2021‎

Long noncoding RNAs (lncRNAs) can compete with endogenous RNAs to modulate the gene expression and contribute to oncogenesis and tumor metastasis. lncRNA NKX2-1-AS1 (NKX2-1 antisense RNA 1) plays a pivotal role in cancer progression and metastasis; however, the contribution of aberrant expression of NKX2-1-AS1 and the mechanism by which it functions as a competing endogenous RNA (ceRNA) in gastric cancer (GC) remains elusive. NKX2-1-AS1 expression was detected in paired tumor and nontumor tissues of 178 GC patients by quantitative reverse transcription PCR (qRT-PCR). Using loss-of-function and gain-of-function experiments, the biological functions of NKX2-1-AS1 were evaluated both in vitro and in vivo. Further, to assess that NKX2-1-AS1 regulates angiogenic processes, tube formation and co-culture assays were performed. RNA binding protein immunoprecipitation (RIP) assay, a dual-luciferase reporter assay, quantitative PCR, Western blot, and fluorescence in situ hybridization (FISH) assays were performed to determine the potential molecular mechanism underlying this ceRNA. The results indicated that NKX2-1-AS1 expression was upregulated in GC cell lines and tumor tissues. Overexpression of NKX2-1-AS1 was significantly associated with tumor progression and enhanced angiogenesis. Functionally, NKX2-1-AS1 overexpression promoted GC cell proliferation, metastasis, invasion, and angiogenesis, while NKX2-1-AS1 knockdown restored these effects, both in vitro and in vivo. RIP and dual-luciferase assays revealed that the microRNA miR-145-5p is a direct target of NKX2-1-AS1 and that NKX2-1-AS1 serves as a ceRNA to sponge miRNA and regulate angiogenesis in GC. Moreover, serpin family E member 1 (SERPINE1) is an explicit target for miR-145-5p; besides, the NKX2-1-AS1/miR-145-5p axis induces the translation of SERPINE1, thus activating the VEGFR-2 signaling pathway to promote tumor progression and angiogenesis. NKX2-1-AS1 overexpression is associated with enhanced tumor cell proliferation, angiogenesis, and poor prognosis in GC. Collectively, NKX2-1-AS1 functions as a ceRNA to miR-145-5p and promotes tumor progression and angiogenesis by activating the VEGFR-2 signaling pathway via SERPINE1.


A pentapeptide enabled AL3810 liposome-based glioma-targeted therapy with immune opsonic effect attenuated.

  • Jinyang Li‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2021‎

AL3810, a molecular dual inhibitor of the vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR), has earned the permission of phase II clinical trial for tumor treatment by China FDA. As a reversible ATP-competitive inhibitor, AL3810 targets ATP-binding site on intracellular region of VEGFR and FGFR, whereas, AL3810 lacking interplay with extracellular region of receptors rendered deficient blood-brain tumor barrier (BBTB) recognition, poor brain penetration and unsatisfactory anti-glioma efficacy. Integrin αvβ3 overexpressed on capillary endothelial cells of BBTB as well as glioma cells illuminated ligand-modified liposomes for pinpoint spatial delivery into glioma. The widely accepted peptide c(RGDyK)-modified liposome loading AL3810 of multiple dosing caused hypothermia, activated anti-c(RGDyK)-liposome IgG and IgM antibody and pertinent complements C3b and C5b-9, and experienced complement-dependent opsonization. We newly proposed a pentapeptide mn with superb αvβ3-binding affinity and tailored AL3810-loaded mn-modified liposome that afforded impervious blood circulation, targeting ability, and glioma therapeutic expertise as vastly alleviated immune opsonization on the underpinning of the finite antibodies and complements assembly. Stemming from attenuated immunogenicity, peptide mn strengthened liposome functions as a promising nanocarrier platform for molecular targeting agents.


Platelet-derived microvesicles induce calcium oscillations and promote VSMC migration via TRPV4.

  • Shan-Shan Li‎ et al.
  • Theranostics‎
  • 2021‎

Rationale: Abnormal migration of vascular smooth muscle cells (VSMCs) from the media to the interior is a critical process during the intimal restenosis caused by vascular injury. Here, we determined the role of platelet-derived microvesicles (PMVs) released by activated platelets in VSMC migration. Methods: A percutaneous transluminal angioplasty balloon dilatation catheter was used to establish vascular intimal injury. Collagen I was used to activate PMVs, mimicking collagen exposure during intimal injury. To determine the effects of PMVs on VSMC migration in vitro, scratch wound healing assays were performed. Fluorescence resonance energy transfer was used to detect variations of calcium dynamics in VSMCs. Results: Morphological results showed that neointimal hyperplasia was markedly increased after balloon injury of the carotid artery in rats, and the main component was VSMCs. PMVs significantly promoted single cell migration and wound closure in vitro. Fluorescence resonance energy transfer revealed that PMVs induced temporal and dynamic calcium oscillations in the cytoplasms of VSMCs. The influx of extracellular calcium, but not calcium from intracellular stores, was involved in the process described above. The channel antagonist GSK219 and specific siRNA revealed that a membrane calcium channel, transient receptor potential vanilloid 4 (TRPV4), participated in the calcium oscillations and VSMC migration induced by PMVs. Conclusions: TRPV4 participated in the calcium oscillations and VSMC migration induced by PMVs. PMVs and the related molecules might be novel therapeutic targets for vascular remodeling during vascular injury.


The protective effect of PK11195 on D-galactose-induced amnestic mild cognitive impairment in rats.

  • Chen Ye‎ et al.
  • Annals of translational medicine‎
  • 2020‎

This study aimed to investigate the preventive effect of translocator protein 18kDa (TSPO) ligand PK11195 on amnestic mild cognitive impairment (aMCI), as well as its influence on astrocytes, in order to identify effective ways to prevent aMCI.


Detection of Type I and III collagen in porcine acellular matrix using HPLC-MS.

  • Yang Zhang‎ et al.
  • Regenerative biomaterials‎
  • 2020‎

Acellular matrix (ACM) has been widely used as a biomaterial. As the main component of ACM, collagen type and content show influence on the material properties. In this research, the collagen in ACM from different tissues of pig were determined by detection of marker peptides. The marker peptides of Type I and III collagen were identified from the digested collagen standards using ions trap mass spectrometry (LCQ). The relationship between the abundance of marker peptide and collagen concentration was established using triple quadrupole mass spectrometer (TSQ). The contents of Type I and III collagen in ACM from different tissues were determined. The method was further verified by hydroxyproline determination. The results showed that, the sum of Type I and III collagen contents in the ACM from small intestinal submucosa, dermis and Achilles tendon of pig were about 87.59, 81.41 and 61.13%, respectively, which were close to the total collagen contents in these tissues. The results proved that this method could quantitatively detect the collagen with different types in the ACM of various tissues.


The effectiveness of specialized nursing interventions for patients with Parkinson disease: A randomized controlled study protocol.

  • Yi Chen‎ et al.
  • Medicine‎
  • 2021‎

The purpose of this experiment is to evaluate the impact of the care of Parkinson disease nurse specialist on improving motor symptoms and life quality for patients with Parkinson disease (PD).


Involvement of endogenous testosterone in hepatic steatosis in women with polycystic ovarian syndrome.

  • Tianhe Li‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2020‎

The prevalence of nonalcoholic fatty liver disease (NAFLD) is higher in women with polycystic ovarian syndrome (PCOS) than that in healthy women. This association can be explained in part by the resistance to insulin and the prevalence of obesity, which are fueled by high androgen levels. However, there is little evidence of the involvement of endogenous testosterone in hepatic steatosis in women with PCOS. Here, we treated Sprague Dawley rats with the aromatase inhibitor, letrozole, to increase the endogenous testosterone level and to decrease the estradiol levels. We also quantified the testosterone levels in human serum specimens and HepG2 cells to investigate the effects of androgens on hepatic steatosis and liver dysfunction.


PpINH1, an invertase inhibitor, interacts with vacuolar invertase PpVIN2 in regulating the chilling tolerance of peach fruit.

  • Xingxing Wang‎ et al.
  • Horticulture research‎
  • 2020‎

Sucrose metabolism, particularly the decomposition of sucrose by invertase, plays a central role in plant responses to cold stress. Invertase inhibitors (INHs) evolved in higher plants as essential regulators of sucrose metabolism. By limiting invertase activity, INHs keep cellular sugar levels elevated, which provides enhanced protection to plants under stress. Our results showed that the expression of PpVIN2, the only vacuolar invertase (VIN) gene in peach fruit sensitive to chilling temperatures, increases significantly during cold storage, while VIN enzyme activity increases more modestly. We also found that peach fruit transiently overexpressing PpINH1 had decreased VIN activity. Interactions of PpINH1 and PpVIN2 with recombinant proteins were shown by yeast two-hybrid assays and bimolecular fluorescence complementation assays, as well as in vitro. During cold storage, trehalose-treated peach fruit had significantly increased PpINH1 expression, decreased VIN enzyme activity, and significantly higher sucrose content than did untreated fruit. As a result, the treated fruit had enhanced resistance to chilling injury. Collectively, our data show that the post-translational repression of VIN enzyme activity by PpINH1 helps maintain sucrose levels in peach fruit during cold storage, thereby improving resistance to chilling injury.


Glycated albumin in pregnancy: reference intervals establishment and its predictive value in adverse pregnancy outcomes.

  • Ying Dong‎ et al.
  • BMC pregnancy and childbirth‎
  • 2020‎

Many efforts have been focused on the alternative glycemic marker glycated albumin (GlyA) and its application in pregnancy during which profound physiological changes take place. Our objective was to determine the reference intervals (RIs) of GlyA in healthy Chinese pregnant women and to assess the predictive value of serum GlyA in adverse pregnancy outcomes.


In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits.

  • Xiangbo Ruan‎ et al.
  • Nature communications‎
  • 2020‎

Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) are considered non-conserved. Although lncRNAs have been shown to function in diverse pathophysiological processes in mice, it remains largely unknown whether human lncRNAs have such in vivo functions. Here, we describe an integrated pipeline to define the in vivo function of non-conserved human lncRNAs. We first identify lncRNAs with high function potential using multiple indicators derived from human genetic data related to cardiometabolic traits, then define lncRNA's function and specific target genes by integrating its correlated biological pathways in humans and co-regulated genes in a humanized mouse model. Finally, we demonstrate that the in vivo function of human-specific lncRNAs can be successfully examined in the humanized mouse model, and experimentally validate the predicted function of an obesity-associated lncRNA, LINC01018, in regulating the expression of genes in fatty acid oxidation in humanized livers through its interaction with RNA-binding protein HuR.


Genetic Characterization and Molecular Evolution of Urban Seoul Virus in Southern China.

  • Qianqian Su‎ et al.
  • Viruses‎
  • 2019‎

Seoul virus (SEOV), which causes hemorrhagic fever with renal syndrome (HFRS) in humans, has spread all over the world, especially in mainland China. Understanding basic mechanisms of SEOV evolution is essential to better combat and prevent viral diseases. Here, we examined SEOV prevalence and evolution in the residential area of four districts in Guangzhou city, China. The carriage of SEOV was observed in 33.33% of the sampled rodents, with 35.96% of the sampled Rattus norvegicus and 13.33% of R. tanezumi. Based on the comprehensive analyses of large (L), medium (M), and small (S) segments, our study first demonstrated that the genetic characterization of urban SEOV was shaped by high nucleotide substitution rates, purifying selection, and recombination. Additionally, we detected mutational saturation in the S segment of SEOV, which may lead to the biases of genetic divergence and substitution rates in our study. Importantly, we have filled the gap of SEOV evolution in the urban area. The genetic variation of SEOV may highlight the risk of HFRS, which merits further investigation.


The influence of PM2.5 on lung injury and cytokines in mice.

  • Jie Yang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Exposure to particulate matter ≤2.5 µm in diameter (PM2.5) profoundly affects human health. However, the role of PM2.5 on lung injury and cytokine levels in mice is currently unknown. The aim was to examine the effect of PM2.5 pollution on lung injury in mice fed at an underground parking lot. A total of 20 female Kunming mice were randomly divided into control and polluted groups, with 10 rats in each group. The control group was kept in the laboratory, while the pollution group was fed in an underground parking lot. The concentrations of pollutants were measured using ambient air quality monitoring instruments. After 3 months of treatment, the lungs were collected and examined using electron microscopy, and the morphological structures were assessed using hematoxylin and eosin staining. The polarization of macrophages was evaluated by immunofluorescence. The concentration of interleukin (IL)-4, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 in peripheral sera were assessed by ELISA. The mRNA and protein levels of IL-4, TNF-α, and TGF-β1 in lung tissues were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analyses, respectively. In the polluted group, the levels of CO, NOx and PM2.5 were significantly higher compared with the control group. Compared with the controls, intracellular edema, an increased number of microvilli and lamellar bodies, smaller lamellar bodies in type II alveolar epithelial cells, and abundant particles induced by PM2.5 in macrophages were observed in the polluted group. The lung ultrastructure changed in the polluted group, revealing exhaust-induced lung injury: The tissues were damaged, and the number of inflammatory cells, neutrophils, polylymphocytes and eosinophils increased in the polluted group compared with the control group. The authors also observed that the number of M1 and M2 macrophages markedly increased after the exhaust treatment. The levels of IL-4, TNF-α and TGF-β1 in the sera and tissues were significantly increased in the polluted group. PM2.5 pollutants in underground garages can lead to lung injury and have a significant impact on the level of inflammatory cytokines in mice. Therefore, the authors suggest that PM2.5 can activate the inflammatory reaction and induce immune dysfunction, leading to ultrastructural damage.


Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection.

  • Yi Chen‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Plasmonic superlattice membrane exhibits remarkable functional properties that are emerging from engineered assemblies of well-defined "meta-atoms," which is featured as a conceptual new category of two-dimensional optical metamaterials. The ability to build plasmonic membranes over macroscopic surfaces but with nanoscale ordering is crucial for systematically controlling the light-matter interactions and represents considerable advances for the bottom-up fabrication of soft optoelectronic devices and circuits. Through rational design, novel nanocrystals, and by engineering the packing orders, the hybridized plasmon signature can be customized, promoting controllable near-field confinement for surface-enhanced Raman scattering (SERS) based detection. However, building such 2D architectures has proven to be remarkably challenging due to the complicated interparticle forces and multiscale interactions during self-assembly. Here, we report on the fabrication of ultralong-nanobrick-based giant plasmonic superlattice membranes as high-performance SERS substrates for ultrasensitive and label-free protein detection. Using aspect-ratio controllable short-to-ultralong nanobricks as building blocks, we construct three distinctive plasmonic membranes by polymer-ligand-based strategy in drying-mediated self-assembly at the air/water interfaces. The plasmonic membranes exhibit monolayered morphology with nanoscale assembled ordering but macroscopic lateral dimensions, inducing enhanced near-field confinement and uniform hot-spot distribution. By choosing 4-aminothiophenol and bovine serum albumin (BSA) as a model analyte, we establish an ultrasensitive assay for label-free SERS detection. The detection limit of BSA can reach 15 nM, and the enhancement factor reached 4.3 × 105, enabling a promising avenue for its clinical application in ultrasensitive biodiagnostics.


Characterization of Two Neutralizing Antibodies against Rift Valley Fever Virus Gn Protein.

  • Meng Hao‎ et al.
  • Viruses‎
  • 2020‎

The Rift Valley fever virus (RVFV) is an arthropod-borne virus that can not only cause severe disease in domestic animals but also in humans. However, the licensed vaccines or available therapeutics for humans do not exist. Here, we report two Gn-specific neutralizing antibodies (NAbs), isolated from a rhesus monkey immunized with recombinant human adenoviruses type 4 expressing Rift Valley fever virus Gn and Gc protein (rHAdV4-GnGcopt). The two NAbs were both able to protect host cells from RVFV infection. The interactions between NAbs and Gn were then characterized to demonstrate that these two NAbs might preclude RVFV glycoprotein rearrangement, hindering the exposure of fusion loops in Gc to endosomal membranes after the virus invades the host cell. The target region for the two NAbs is located in the Gn domain III, implying that Gn is a desired target for developing vaccines and neutralizing antibodies against RVFV.


Effect of Grilled Nux Vomica on Differential RNA Expression Profile of Gastrocnemius Muscle and Toll‑Like Receptor 4 (TLR-4)/Nuclear Factor kappa B (NF-κB) Signaling in Experimental Autoimmune Myasthenia Gravis Rats.

  • Xu Hong Jiang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Myasthenia gravis (MG) is a progressive autoimmune disorder caused by the production of antibodies directed against acetylcholine receptors (AChRs), resulting in muscle weakness and fatigue. This study aimed to explore the effect and mechanism of grilled nux vomica (GNV) in experimental autoimmune myasthenia gravis (EAMG) rats. MATERIAL AND METHODS Rat 97-116 peptides were used to mediate disease in the EAMG model in SPF female Lewis rats. The treatment groups received grilled nux vomica (75 mg/kg, 150 mg/kg, and 225 mg/kg). The autoantibody and inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). RNA profiling was performed on high-dose and model group rats. Profiling results and TLR-4/NF-kappaB signaling were validated by q-PCR and Western blot analysis. RESULTS The results showed that GNV could attenuate the symptoms of EAMG rats. There was a decreased level of AChR-ab, IFN-γ, TNF-alpha, IL-2, IL-4, and IL-17 levels, and an increased level of TGF-ß1. In total, 235 differentially expressed genes (DEGs), consisting of 175 upregulated DEGs and 60 downregulated DEGs, were identified. Functional annotation demonstrated that DEGs were largely associated with leukocyte cell-cell adhesion, NF-kappa B signaling pathway, muscle contraction, and cardiac muscle contraction pathway. Rac2, Itgb2, Lcp2, Myl3, and Tnni1 were considered as hub genes with a higher degree value in the protein-protein interaction (PPI) network. The q-PCR and Western blot results of hub genes were consistent with RNA profiles. GNV treatment also significantly reduced the TLR-4 and NF-kappaB p65 protein expression in EAMG rats. CONCLUSIONS These results indicate that grilled nux vomica ameliorates EAMG by depressing the TLR-4/NF-kappaB signaling pathway, and hub genes may serve as potential targets for MG treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: