Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 49 papers out of 49 papers

The absence of BBSome function decreases synaptogenesis and causes ectopic synapse formation in the retina.

  • Ying Hsu‎ et al.
  • Scientific reports‎
  • 2020‎

Photoreceptors possess ribbon synapses distinct from the conventional synapses in the brain. Little is known about the function of the BBSome, a complex integral in ciliary and intracellular trafficking, in ribbon synaptic formation. We performed immunohistochemistry using retinas from Bardet-Biedl Syndrome (BBS) mouse models and found that BBS mutant animals have significantly fewer ribbon synapses in the outer plexiform layer and increased ectopic synapses in the outer nuclear layer compared to controls. Many ectopic synapses in BBS mutant retinas are associated with horizontal cell axonal processes that aberrantly intrude into the outer nuclear layer. To determine whether this horizontal cell phenotype is a consequence of retinal degeneration, we examined this phenotype in mice with photoreceptor-specific inactivation of the BBSome induced by Cre recombinase driven by the rhodopsin promoter. At three months of age, despite retinal degeneration, Bbs8floxed/floxed; Rho-Cre+ mice lack the aberrant intrusion of horizontal cell processes. At 6 months, some horizontal cell processes intrude into the outer nuclear layer in Bbs8floxed/floxed; Rho-Cre+ mice, but the phenotype does not recapitulate the phenotypic severity observed in young congenital BBS mutant mice. Therefore, the lack of BBSome function negatively impacts retinal synaptogenesis, and causes horizontal cell defects in a potentially cell-autonomous fashion.


Accumulation of non-outer segment proteins in the outer segment underlies photoreceptor degeneration in Bardet-Biedl syndrome.

  • Poppy Datta‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Compartmentalization and polarized protein trafficking are essential for many cellular functions. The photoreceptor outer segment (OS) is a sensory compartment specialized for phototransduction, and it shares many features with primary cilia. As expected, mutations disrupting protein trafficking to cilia often disrupt protein trafficking to the OS and cause photoreceptor degeneration. Bardet-Biedl syndrome (BBS) is one of the ciliopathies associated with defective ciliary trafficking and photoreceptor degeneration. However, precise roles of BBS proteins in photoreceptor cells and the underlying mechanisms of photoreceptor degeneration in BBS are not well understood. Here, we show that accumulation of non-OS proteins in the OS underlies photoreceptor degeneration in BBS. Using a newly developed BBS mouse model [Leucine zipper transcription factor-like 1 (Lztfl1)/Bbs17 mutant], isolated OSs, and quantitative proteomics, we determined 138 proteins that are enriched more than threefold in BBS mutant OS. In contrast, only eight proteins showed a more than threefold reduction. We found striking accumulation of Stx3 and Stxbp1/Munc18-1 and loss of polarized localization of Prom1 within the Lztfl1 and Bbs1 mutant OS. Ultrastructural analysis revealed that large vesicles are formed in the BBS OS, disrupting the lamellar structure of the OS. Our findings suggest that accumulation (and consequent sequestration) of non-OS proteins in the OS is likely the primary cause of photoreceptor degeneration in BBS. Our data also suggest that a major function of BBS proteins in photoreceptors is to transport proteins from the OS to the cell body or to prevent entry of non-OS proteins into the OS.


Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins.

  • Rachel D Starks‎ et al.
  • PLoS genetics‎
  • 2015‎

Insulin and its receptor are critical for the regulation of metabolic functions, but the mechanisms underlying insulin receptor (IR) trafficking to the plasma membrane are not well understood. Here, we show that Bardet Biedl Syndrome (BBS) proteins are necessary for IR localization to the cell surface. We demonstrate that the IR interacts physically with BBS proteins, and reducing the expression of BBS proteins perturbs IR expression in the cell surface. We show the consequence of disrupting BBS proteins for whole body insulin action and glucose metabolism using mice lacking different BBS genes. These findings demonstrate the importance of BBS proteins in underlying IR cell surface expression. Our data identify defects in trafficking and localization of the IR as a novel mechanism accounting for the insulin resistance commonly associated with human BBS. This is supported by the reduced surface expression of the IR in fibroblasts derived from patients bearing the M390R mutation in the BBS1 gene.


Calpain-5 mutations cause autoimmune uveitis, retinal neovascularization, and photoreceptor degeneration.

  • Vinit B Mahajan‎ et al.
  • PLoS genetics‎
  • 2012‎

Autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV) is an autoimmune condition of the eye that sequentially mimics uveitis, retinitis pigmentosa, and proliferative diabetic retinopathy as it progresses to complete blindness. We identified two different missense mutations in the CAPN5 gene in three ADNIV kindreds. CAPN5 encodes calpain-5, a calcium-activated cysteine protease that is expressed in retinal photoreceptor cells. Both mutations cause mislocalization from the cell membrane to the cytosol, and structural modeling reveals that both mutations lie within a calcium-sensitive domain near the active site. CAPN5 is only the second member of the large calpain gene family to cause a human Mendelian disorder, and this is the first report of a specific molecular cause for autoimmune eye disease. Further investigation of these mutations is likely to provide insight into the pathophysiologic mechanisms of common diseases ranging from autoimmune disorders to diabetic retinopathy.


The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome.

  • Xitiz Chamling‎ et al.
  • PLoS genetics‎
  • 2014‎

Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer's vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene.


BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes.

  • Qihong Zhang‎ et al.
  • Human molecular genetics‎
  • 2012‎

There are numerous genes for which loss-of-function mutations do not produce apparent phenotypes even though statistically significant quantitative changes to biological pathways are observed. To evaluate the biological meaning of small effects is challenging. Bardet-Biedl syndrome (BBS) is a heterogeneous autosomal recessive disorder characterized by obesity, retinopathy, polydactyly, renal malformations, learning disabilities and hypogenitalism, as well as secondary phenotypes including diabetes and hypertension. BBS knockout mice recapitulate most human phenotypes including obesity, retinal degeneration and male infertility. However, BBS knockout mice do not develop polydacyly. Here we showed that the loss of BBS genes in mice result in accumulation of Smoothened and Patched 1 in cilia and have a decreased Shh response. Knockout of Bbs7 combined with a hypomorphic Ift88 allele (orpk as a model for Shh dysfuction) results in embryonic lethality with e12.5 embryos having exencephaly, pericardial edema, cleft palate and abnormal limb development, phenotypes not observed in Bbs7(-/-) mice. Our results indicate that BBS genes modulate Shh pathway activity and interact genetically with the intraflagellar transport (IFT) pathway to play a role in mammalian development. This study illustrates an effective approach to appreciate the biological significance of a small effect.


Ectopic expression of human BBS4 can rescue Bardet-Biedl syndrome phenotypes in Bbs4 null mice.

  • Xitiz Chamling‎ et al.
  • PloS one‎
  • 2013‎

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, hypogenitalism and renal defects. Recent findings have associated the etiology of the disease with cilia, and BBS proteins have been implicated in trafficking various ciliary cargo proteins. To date, 17 different genes have been reported for BBS among which BBS1 is the most common cause of the disease followed by BBS10, and BBS4. A murine model of Bbs4 is known to phenocopy most of the human BBS phenotypes, and it is being used as a BBS disease model. To better understand the in vivo localization, cellular function, and interaction of BBS4 with other proteins, we generated a transgenic BBS4 mouse expressing the human BBS4 gene under control of the beta actin promoter. The transgene is expressed in various tissues including brain, eye, testis, heart, kidney, and adipose tissue. These mice were further bred to express the transgene in Bbs4 null mice, and their phenotype was characterized. Here we report that despite tissue specific variable expression of the transgene, human BBS4 was able to complement the deficiency of Bbs4 and rescue all the BBS phenotypes in the Bbs4 null mice. These results provide an encouraging prospective for gene therapy for BBS related phenotypes and potentially for other ciliopathies.


A BBSome subunit links ciliogenesis, microtubule stability, and acetylation.

  • Alexander V Loktev‎ et al.
  • Developmental cell‎
  • 2008‎

Primary cilium dysfunction affects the development and homeostasis of many organs in Bardet-Biedl syndrome (BBS). We recently showed that seven highly conserved BBS proteins form a stable complex, the BBSome, that functions in membrane trafficking to and inside the primary cilium. We have now discovered a BBSome subunit that we named BBIP10. Similar to other BBSome subunits, BBIP10 localizes to the primary cilium, BBIP10 is present exclusively in ciliated organisms, and depletion of BBIP10 yields characteristic BBS phenotypes in zebrafish. Unexpectedly, BBIP10 is required for cytoplasmic microtubule polymerization and acetylation, two functions not shared with any other BBSome subunits. Strikingly, inhibition of the tubulin deacetylase HDAC6 restores microtubule acetylation in BBIP10-depleted cells, and BBIP10 physically interacts with HDAC6. BBSome-bound BBIP10 may therefore function to couple acetylation of axonemal microtubules and ciliary membrane growth.


Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene.

  • Darryl Y Nishimura‎ et al.
  • American journal of human genetics‎
  • 2005‎

Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: