Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 85 papers

Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling.

  • Bernadette E Grayson‎ et al.
  • Biology of sex differences‎
  • 2017‎

Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery.


Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation.

  • Silvana Obici‎ et al.
  • Molecular metabolism‎
  • 2015‎

Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome.


GLP-1R agonism enhances adjustable gastric banding in diet-induced obese rats.

  • Kirk M Habegger‎ et al.
  • Diabetes‎
  • 2013‎

Bariatric procedures vary in efficacy, but overall are more effective than behavioral and pharmaceutical treatment. Roux-en-Y gastric bypass causes increased secretion of glucagon-like peptide 1 (GLP-1) and reduces body weight (BW) more than adjustable gastric banding (AGB), which does not trigger increased GLP-1 secretion. Since GLP-1-based drugs consistently reduce BW, we hypothesized that GLP-1 receptor (GLP-1R) agonists would augment the effects of AGB. Male Long-Evans rats with diet-induced obesity received AGB implantation or sham surgery. GLP-1R agonism, cannabinoid receptor-1 (CB1-R) antagonism, or vehicle was combined with inflation to evaluate interaction between AGB and pharmacological treatments. GLP1-R agonism reduced BW in both sham and AGB rats (left uninflated) compared with vehicle-treated animals. Subsequent band inflation was ineffective in vehicle-treated rats but enhanced weight loss stimulated by GLP1-R agonism. In contrast, there was no additional BW loss when CB1-R antagonism was given with AGB. We found band inflation to trigger neural activation in areas of the nucleus of the solitary tract known to be targeted by GLP-1R agonism, offering a potential mechanism for the interaction. These data show that GLP-1R agonism, but not CB1-R antagonism, improves weight loss achieved by AGB and suggest an opportunity to optimize bariatric surgery with adjunctive pharmacotherapy.


Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding.

  • Gina M Leinninger‎ et al.
  • Cell metabolism‎
  • 2009‎

The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.


Differences in the central anorectic effects of glucagon-like peptide-1 and exendin-4 in rats.

  • Jason G Barrera‎ et al.
  • Diabetes‎
  • 2009‎

Glucagon-like peptide (GLP)-1 is a regulatory peptide synthesized in the gut and the brain that plays an important role in the regulation of food intake. Both GLP-1 and exendin (Ex)-4, a long-acting GLP-1 receptor (GLP-1r) agonist, reduce food intake when administered intracerebroventricularly, whereas Ex4 is much more potent at suppressing food intake when given peripherally. It has generally been hypothesized that this difference is due to the relative pharmacokinetic profiles of GLP-1 and Ex4, but it is possible that the two peptides control feeding via distinct mechanisms.


Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing.

  • Claude Knauf‎ et al.
  • Diabetes‎
  • 2008‎

Ingested glucose is detected by specialized sensors in the enteric/hepatoportal vein, which send neural signals to the brain, which in turn regulates key peripheral tissues. Hence, impairment in the control of enteric-neural glucose sensing could contribute to disordered glucose homeostasis. The aim of this study was to determine the cells in the brain targeted by the activation of the enteric glucose-sensing system.


Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons.

  • Kevin X Zhang‎ et al.
  • Nature‎
  • 2020‎

The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.


Gut HIF2α signaling is increased after VSG, and gut activation of HIF2α decreases weight, improves glucose, and increases GLP-1 secretion.

  • Simon S Evers‎ et al.
  • Cell reports‎
  • 2022‎

Gastric bypass and vertical sleeve gastrectomy (VSG) remain the most potent and durable treatments for obesity and type 2 diabetes but are also associated with iron deficiency. The transcription factor HIF2α, which regulates iron absorption in the duodenum, increases following these surgeries. Increasing iron levels by means of dietary supplementation or hepatic hepcidin knockdown does not undermine the effects of VSG, indicating that metabolic improvements following VSG are not secondary to lower iron levels. Gut-specific deletion of Vhl results in increased constitutive duodenal HIF2α signaling and produces a profound lean, glucose-tolerant phenotype that mimics key effects of VSG. Interestingly, intestinal Vhl deletion also results in increased intestinal secretion of GLP-1, which is essential for these metabolic benefits. These data demonstrate a role for increased duodenal HIF2α signaling in regulating crosstalk between iron-regulatory systems and other aspects of systemic physiology important for metabolic regulation.


Dietary induction of obesity and insulin resistance is associated with changes in Fgf21 DNA methylation in liver of mice.

  • Cathleen Geißler‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2022‎

DNA methylation is dynamically regulated in metabolic diseases, but it remains unclear whether the changes are causal or consequential. Therefore, we used a longitudinal approach to refine the onset of metabolic and DNA methylation changes at high temporal resolution. Male C57BL/6N mice were fed with 60 % high-fat diet (HFD) for up to 12 weeks and metabolically characterized weekly. Liver was collected after 1, 2, 4, 5, 6, 7, 8, and 12 weeks and hepatic DNA methylation and gene expression were analyzed. A subset of obese mice underwent vertical sleeve gastrectomy (VSG) or metformin treatment and livers were studied. Distinct hepatic gene expression patterns developed upon feeding HFD, with genes from the fatty acid metabolism pathway being predominantly altered. When comparing metabolic data with gene expression and DNA methylation, in particular Fgf21 DNA methylation decreased before the onset of increased Fgf21 expression and metabolic changes. Neither weight loss induced by VSG nor improved glucose tolerance by metformin treatment could revert hepatic Fgf21 DNA methylation or expression. Our data emphasize the dynamic induction of DNA methylation upon metabolic stimuli. Reduced Fgf21 DNA methylation established before massive overexpression of Fgf21, which is likely an adaptive effort of the liver to maintain glucose homeostasis despite the developing insulin resistance and steatosis. Fgf21 DNA methylation resisted reversion by intervention strategies, illustrating the long-term effects of unhealthy lifestyle. Our data provide a temporal roadmap to the development of hepatic insulin resistance, comprehensively linking DNA methylation with gene expression and metabolic data.


Intestinal HIF-2α Regulates GLP-1 Secretion via Lipid Sensing in L-Cells.

  • Raja Gopal Reddy Mooli‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Compelling evidence shows that glucagon-like peptide-1 (GLP-1) has a profound effect in restoring normoglycemia in type 2 diabetic patients by increasing pancreatic insulin secretion. Although L-cells are the primary source of circulating GLP-1, the current therapies do not target L-cells to increase GLP-1 levels. Our study aimed to determine the molecular underpinnings of GLP-1 secretion as an impetus to identify new interventions to target endogenous L-cells.


Joint international consensus statement for ending stigma of obesity.

  • Francesco Rubino‎ et al.
  • Nature medicine‎
  • 2020‎

People with obesity commonly face a pervasive, resilient form of social stigma. They are often subject to discrimination in the workplace as well as in educational and healthcare settings. Research indicates that weight stigma can cause physical and psychological harm, and that affected individuals are less likely to receive adequate care. For these reasons, weight stigma damages health, undermines human and social rights, and is unacceptable in modern societies. To inform healthcare professionals, policymakers, and the public about this issue, a multidisciplinary group of international experts, including representatives of scientific organizations, reviewed available evidence on the causes and harms of weight stigma and, using a modified Delphi process, developed a joint consensus statement with recommendations to eliminate weight bias. Academic institutions, professional organizations, media, public-health authorities, and governments should encourage education about weight stigma to facilitate a new public narrative about obesity, coherent with modern scientific knowledge.


GDF15 Mediates the Effect of Skeletal Muscle Contraction on Glucose-Stimulated Insulin Secretion.

  • Hui Zhang‎ et al.
  • Diabetes‎
  • 2023‎

Exercise is a first-line treatment for type 2 diabetes and preserves β-cell function by hitherto unknown mechanisms. We postulated that proteins from contracting skeletal muscle may act as cellular signals to regulate pancreatic β-cell function. We used electric pulse stimulation (EPS) to induce contraction in C2C12 myotubes and found that treatment of β-cells with EPS-conditioned medium enhanced glucose-stimulated insulin secretion (GSIS). Transcriptomics and subsequent targeted validation revealed growth differentiation factor 15 (GDF15) as a central component of the skeletal muscle secretome. Exposure to recombinant GDF15 enhanced GSIS in cells, islets, and mice. GDF15 enhanced GSIS by upregulating the insulin secretion pathway in β-cells, which was abrogated in the presence of a GDF15 neutralizing antibody. The effect of GDF15 on GSIS was also observed in islets from GFRAL-deficient mice. Circulating GDF15 was incrementally elevated in patients with pre- and type 2 diabetes and positively associated with C-peptide in humans with overweight or obesity. Six weeks of high-intensity exercise training increased circulating GDF15 concentrations, which positively correlated with improvements in β-cell function in patients with type 2 diabetes. Taken together, GDF15 can function as a contraction-induced protein that enhances GSIS through activating the canonical signaling pathway in a GFRAL-independent manner.


Continuous glucose monitoring reveals glycemic variability and hypoglycemia after vertical sleeve gastrectomy in rats.

  • Simon S Evers‎ et al.
  • Molecular metabolism‎
  • 2020‎

Post-bariatric surgery hypoglycemia (PBH) is defined as the presence of neuroglycopenic symptoms accompanied by postprandial hypoglycemia in bariatric surgery patients. Recent clinical studies using continuous glucose monitoring (CGM) technology revealed that PBH is more frequently observed in vertical sleeve gastrectomy (VSG) patients than previously recognized. PBH cannot be alleviated by current medication. Therefore, a model system to investigate the mechanism and treatment is required.


Vertical sleeve gastrectomy restores glucose homeostasis in apolipoprotein A-IV KO mice.

  • Josh W Pressler‎ et al.
  • Diabetes‎
  • 2015‎

Bariatric surgery is the most successful strategy for treating obesity, yet the mechanisms for this success are not clearly understood. Clinical literature suggests that plasma levels of apolipoprotein A-IV (apoA-IV) rise with Roux-en-Y gastric bypass (RYGB). apoA-IV is secreted from the intestine postprandially and has demonstrated benefits for both glucose and lipid homeostasis. Because of the parallels in the metabolic improvements seen with surgery and the rise in apoA-IV levels, we hypothesized that apoA-IV was necessary for obtaining the metabolic benefits of bariatric surgery. To test this hypothesis, we performed vertical sleeve gastrectomy (VSG), a surgery with clinical efficacy very similar to that for RYGB, in whole-body apoA-IV knockout (KO) mice. We found that VSG reduced body mass and improved both glucose and lipid homeostasis similarly in wild-type mice compared with apoA-IV KO mice. In fact, VSG normalized the impairment in glucose tolerance and caused a significantly greater improvement in hepatic triglyceride storage in the apoA-IV KO mice. Last, independent of surgery, apoA-IV KO mice had a significantly reduced preference for a high-fat diet. Altogether, these data suggest that apoA-IV is not necessary for the metabolic improvements shown with VSG, but also suggest an interesting role for apoA-IV in regulating macronutrient preference and hepatic triglyceride levels. Future studies are necessary to determine whether this is the case for RYGB as well.


The role of GM-CSF in adipose tissue inflammation.

  • Dong-Hoon Kim‎ et al.
  • American journal of physiology. Endocrinology and metabolism‎
  • 2008‎

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a proinflammatory cytokine that has a central action to reduce food intake and body weight. Consistent with this, GM-CSF knockout mice are more obese and hyperphagic than wild-type mice. However, in lung, GM-CSF is an important determinant of macrophage infiltration. Consequently, we sought to determine if GM-CSF might contribute to adipose tissue macrophage accumulation, insulin resistance, and low-grade inflammation that occurs when animals gain weight on a high-fat diet (HFD). We therefore determined how targeted genetic disruption of GM-CSF can affect adipose tissue macrophage and cytokine gene expression as well as glucose homeostasis by performing hyperinsulinemic-euglycemic clamps. The number of macrophages and CCR2 gene expression in adipose tissue of GM-CSF knockout mice was decreased relative to those in wild-type mice, and the adipocyte size of mesenteric fat was increased in GM-CSF knockout mice on a HFD compared with wild-type mice. The level of mRNA of the proinflammatory cytokines interleukin-1beta, tumor necrosis factor-alpha, and macrophage inflammatory protein-1alpha was significantly lower in mesenteric fat of GM-CSF knockout mice on the HFD than in wild-type mice. Using the hyperinsulinemic-euglycemic clamp technique, GM-CSF knockout mice had greater overall insulin sensitivity. This increase was due to enhanced peripheral uptake and utilization of glucose rather than to increased hepatic insulin sensitivity. Collectively, the data suggest that the GM-CSF knockout mutation ameliorates peripheral insulin resistance in spite of increased adiposity by reducing inflammation in adipose tissue in response to a HFD.


Fatty acid synthase inhibitors modulate energy balance via mammalian target of rapamycin complex 1 signaling in the central nervous system.

  • Karine Proulx‎ et al.
  • Diabetes‎
  • 2008‎

Evidence links the hypothalamic fatty acid synthase (FAS) pathway to the regulation of food intake and body weight. This includes pharmacological inhibitors that potently reduce feeding and body weight. The mammalian target of rapamycin (mTOR) is an intracellular fuel sensor whose activity in the hypothalamus is also linked to the regulation of energy balance. The purpose of these experiments was to determine whether hypothalamic mTOR complex 1 (mTORC1) signaling is involved in mediating the effects of FAS inhibitors.


A protein domain-based interactome network for C. elegans early embryogenesis.

  • Mike Boxem‎ et al.
  • Cell‎
  • 2008‎

Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.


Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake.

  • Darleen A Sandoval‎ et al.
  • Diabetes‎
  • 2008‎

Glucagon-like peptide-1 (GLP-1) promotes glucose homeostasis through regulation of islet hormone secretion, as well as hepatic and gastric function. Because GLP-1 is also synthesized in the brain, where it regulates food intake, we hypothesized that the central GLP-1 system regulates glucose tolerance as well.


Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner.

  • Andriy Myronovych‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2014‎

Our objective was to investigate the role of bile acids in hepatic steatosis reduction after vertical sleeve gastrectomy (VSG).


Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing.

  • Gowri Nayak‎ et al.
  • Cell reports‎
  • 2020‎

Almost all life forms can detect and decode light information for adaptive advantage. Examples include the visual system, in which photoreceptor signals are processed into virtual images, and the circadian system, in which light entrains a physiological clock. Here we describe a light response pathway in mice that employs encephalopsin (OPN3, a 480 nm, blue-light-responsive opsin) to regulate the function of adipocytes. Germline null and adipocyte-specific conditional null mice show a light- and Opn3-dependent deficit in thermogenesis and become hypothermic upon cold exposure. We show that stimulating mouse adipocytes with blue light enhances the lipolysis response and, in particular, phosphorylation of hormone-sensitive lipase. This response is Opn3 dependent. These data establish a key mechanism in which light-dependent, local regulation of the lipolysis response in white adipocytes regulates energy metabolism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: