Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 317 papers

Calf Spleen Extractive Injection protects mice against cyclophosphamide-induced hematopoietic injury through G-CSF-mediated JAK2/STAT3 signaling.

  • Wenqian Lu‎ et al.
  • Scientific reports‎
  • 2017‎

Calf Spleen Extractive Injection (CSEI), extracted from the spleen of healthy cows (within 24 hours of birth), is a small-peptide-enriched extraction and often used as an ancillary agent in cancer therapy. This study evaluated the hematopoietic function of CSEI and its underlying mechanisms, principally in CHRF, K562 cells, BMNCs and a mouse model of cyclophosphamide (CTX)-induced hematopoietic suppression. CSEI promoted the proliferation and differentiation of CHRF and K562 cells, activated hematopoietic- and proliferation-related factors RSK1p90, ELK1 and c-Myc, and facilitated the expression of differentiation- and maturation-related transcription factors GATA-1, GATA-2. In the mice with hematopoietic suppression, 3 weeks of CSEI administration enhanced the bodyweights and thymus indices, suppressed the spleen indices and strongly elevated the production of HSPCs, neutrophils and B cells in bone marrow, ameliorated bone marrow cellularity, and regulated the ratio of peripheral blood cells. Proteome profiling combined with ELISA revealed that CSEI regulated the levels of cytokines, especially G-CSF and its related factors, in the spleen and plasma. Additional data revealed that CSEI promoted phosphorylation of STAT3, which was stimulated by G-CSF in both mice spleen and cultured BMNCs. Taken together, CSEI has the potential to improve hematopoietic function via the G-CSF-mediated JAK2/STAT3 signaling pathway.


Values of ultrasound features and MMP-9 of papillary thyroid carcinoma in predicting cervical lymph node metastases.

  • Yan Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Preoperative assessment of the cervical lymph node status is important in therapeutic schedule and further evaluations of prognosis for papillary thyroid carcinoma (PTC) patients. Our aim was to investigate the diagnostic values of conventional ultrasound (US), contrast-enhanced ultrasound (CEUS) features and the expression of MMP-9 of PTC in predicting the cervical lymph node metastases (LNM). In total, 156 patients with PTC confirmed by surgical pathology were included. Seventy-one patients had cervical LNM, while 85 patients had no LNM. The patients had cervical LNM (39.51 ± 13.29 years) were younger than those had no LNM (44.15 ± 10.94 years) (P = 0.02). Multivariate logistic regression results showed that tumor size ≥0.95 cm (OR = 13.47), ill-defined margin (OR = 4.31), internal heterogeneous low-enhancement (OR = 5.19) and ECE (OR = 25.25) were predictive for the presence of cervical LNM. The detection rate of ECE for the PTC with LNM by CEUS (81.48%, 44/54) was higher than by US (46.30%, 25/54). There was significant difference in MMP-9 intensity between PTC with and without cervical LNM (P = 0.000), and intense reactions (+++) were mainly found in the PTCs with LNM (80.95%, 17/21). In conclusion, the combination of conventional US, CEUS features and MMP-9 expression may serve as an effective tool for predicting the cervical LNM of PTC.


The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds.

  • Li Nie‎ et al.
  • Scientific reports‎
  • 2017‎

Cells, scaffolds, and growth factors play important roles in bone regeneration. Bone morphogenetic protein 9 (BMP9), a member of BMP family, could facilitate osteogenesis by regulating growth factors and promoting angiogenesis. Similar to other stem cells, rat dental follicle stem cells (rDFCs), the precursor cells of cementoblasts, osteoblasts and periodontal ligament cells, can self-renew and exhibit multipotential capacity. Coralline hydroxyapatite (CHA) has good biocompatibility and conductivity required for bone tissue engineering. Here, we reported that BMP9 could enhance the osteogenic differentiation of rDFCs in cell culture. Moreover, our results suggested that BMP9 acted through the Smad1/5/8 signaling pathway. We also produced a novel scaffold that encompasses bio-degradable CHA seeded with recombinant adenoviruses expressing BMP9-transfected rDFCs (Ad-BMP9-transfected rDFCs). With this implant, we achieved more alveolar bone regeneration in the alveolar bone defect compared to blank group, CHA group and rDFCs group. Our results provided a novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds and its mechanism is regarding the activation of Smad1/5/8 signaling pathway in BMP9-induced rDFCs osteogenesis.


Spatiotemporal heterogeneity of core functional bacteria and their synergetic and competitive interactions in denitrifying sulfur conversion-assisted enhanced biological phosphorus removal.

  • Yan Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Denitrifying sulfur conversion-assisted enhanced biological phosphorus removal (DS-EBPR) has recently been developed for simultaneously removing nitrogen and phosphorus from saline sewage with minimal sludge production. This novel process could potentially enable sustainable wastewater treatment. Yet, the core functional bacteria and their roles are unknown. Here, we used high-throughput 16S rRNA gene sequencing coupled with principal coordinates analysis and ANOVA with Tukey's test to unravel the spatiotemporal heterogeneity of functional bacteria and their synergetic and competitive interactions. We did not find any obvious spatial heterogeneity within the bacterial population in different size-fractionated sludge samples, but the main functional bacteria varied significantly with operation time. Thauera was enriched (9.26~13.63%) as become the core functional genus in the DS-EBPR reactors and links denitrifying phosphorus removal to sulfide oxidation. The other two functional genera were sulfate-reducing Desulfobacter (4.31~12.85%) and nitrate-reducing and sulfide-oxidizing Thiobacillus (4.79~9.92%). These bacteria cooperated in the DS-EBPR process: Desulfobacter reduced sulfate to sulfide for utilization by Thiobacillus, while Thauera and Thiobacillus competed for nitrate and sulfide as well as Thauera and Desulfobacter competed for acetate. This study is the first to unravel the interactions among core functional bacteria in DS-EBPR, thus improving our understanding of how this removal process works.


Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma.

  • Yan Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Pyruvate kinase M2 (PKM2), a key protein in glucose and lipid metabolism, has been reported to be related to carcinogenesis in various malignancies. However, its roles in hepatocellular carcinoma with cirrhotic liver (CL) and hepatocellular carcinoma with non-cirrhoticliver (NCL) haves not been investigated. In our study western bloting, qRT-PCR and immunohistochemistry were performed to evaluate the clinical significance of PKM2 protein expression in CL and NCL. The results revealed that PKM2 protein expression was significantly higher in HCC tissues than in their adjacent non-tumour tissues. The high expression rates of PKM2 were more frequently noted in CL (45. 6%) than in NCL (31. 9%) tissues. High PKM2 expression in CL and NCL tissues was significantly associated with vascular invasion (P = 0.002 and P = 0.004, respectively) and intrahepatic metastasis (P < 0.001 and P = 0.019, respectively). Importantly, Kaplan-Meier survival analysis showed that the disease-specific survival (DSS) and recurrence-free survival (RFS) were lower in CL with high PKM2 expression than in NCL with high PKM2 expression (P = 0.003 and P = 0.003, respectively). Overall, high PKM2 expression was more frequently found in CL than in NCL, and PKM2 overexpression was associated with poor survival rates in patients with CL and NCL.


A new antagonist for CCR4 attenuates allergic lung inflammation in a mouse model of asthma.

  • Yang Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

CCR4 is highly expressed on Th2 cells. CCR4 ligands include CCL22 and CCL17. Chemokine-like factor 1 can also mediate chemotaxis via CCR4. We designed and synthetized novel CCR4 antagonists, which were piperazinyl pyridine derivatives, for disrupting the interaction between three ligands and CCR4. We also determined whether these novel CCR4 antagonists could alleviate allergic asthma in a mouse. For identifying the potent compounds in vitro, we used chemotaxis inhibition and competition binding assays induced by CCL22, CCL17 and one of CKLF1's C-terminal peptides, C27. We found compound 8a which showed excellent potency in blocking the interaction of CCR4 and its three ligands. For studying the specificity of compounds, we chose chemotaxis inhibition assays with different receptors and ligands. We found compound 8a had excellent receptor specificity and exerted few influence on the interaction of other receptors and their ligands. In the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, compound 8a had no obvious cytotoxicity till the higher concentration (16 μM). For determining the potency of compounds in blocking the interaction of CCR4 in vivo, we used the ovalbumin induced allergic asthma model in mice. Our study demonstrated that CCR4 blockaded by compound 8a effectively attenuated airway hyperresponsiveness, airway eosinophilia and Th2 cytokines.


Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences.

  • Zelin Cui‎ et al.
  • Scientific reports‎
  • 2017‎

Staphylococcus phages of the Myoviridae family have a wide host range and potential applications in phage therapy. In this report, safety assessments of these phages were conducted based on their complete genome sequences. The complete genomes of Staphylococcus phages of the Myoviridae family were analyzed, and the Open Reading Frame (ORFs) were compared with a pool of virulence and antibiotic resistance genes using the BLAST algorithm. In addition, the lifestyle of the phages (virulent or temperate) was also confirmed using PHACTS. The results showed that all phages were lytic and did not contain resistance or virulence genes based on bioinformatic analyses, excluding the possibility that they could be vectors for the dissemination of these undesirable genes. These findings suggest that the phages are safe at the genome level. The SceD-like transglycosylase, which is a biomarker for vancomycin-intermediate strains, was widely distributed in the phage genomes. Approximately 70% of the ORFs encoded in the phage genomes have unknown functions; therefore, their roles in the antibiotic resistance and virulence of Staphylococcus aureus are still unknown and require consideration before use in phage therapy.


A combination of CMC and α-MSH inhibited ROS activated NLRP3 inflammasome in hyperosmolarity stressed HCECs and scopolamine-induced dry eye rats.

  • Ying Lv‎ et al.
  • Scientific reports‎
  • 2021‎

An important mechanism involved in dry eye (DE) is the association between tear hyperosmolarity and inflammation severity. Inflammation in DE might be mediated by the NLRP3 inflammasome, which activated by exposure to reactive oxygen species (ROS). A combination of carboxymethylcellulose (CMC) and α-melanocyte stimulating hormone (α-MSH) may influence DE through this mechanism, thus avoiding defects of signal drug. In this study, we assessed whether treatment comprising CMC combined with α-MSH could ameliorate ocular surface function; we found that it promoted tear secretion, reduced the density of fluorescein sodium staining, enhanced the number of conjunctival goblet cells, and reduced the number of corneal apoptotic cells. Investigation of the underlying mechanism suggested that the synergistic effect of combined treatment alleviated DE inflammation through reduction of ROS level and inhibition of the NLRP3 inflammasome in human corneal epithelial cells. These findings indicate that combined CMC + α-MSH treatment could ameliorate lesions and restore ocular surface function in patients with DE through reduction of ROS level and inhibition of NLRP3 signalling.


Distribution, toxicity load, and risk assessment of dissolved metal in surface and overlying water at the Xiangjiang River in southern China.

  • Zhifeng Huang‎ et al.
  • Scientific reports‎
  • 2021‎

Metal pollution in drinking water source has been under scrutiny as it seriously affects human health. This work examined 12 dissolved metals in the surface and overlying water of the Xiangjiang River, an important drinking water source in southern China, and characterized their distribution, identified their possible sources, assessed their toxicity load, and determined their potential ecological and health risk. No significant difference was found in the metal concentration between surface and overlying water. The average metal concentration fell in the order of Mg > Mn > Ba > Fe > Zn > As > Sb > Ni > Cd > V > Cr > Co, and all was lower than the safety threshold in the drinking water guideline of China. Anthropogenic activities were found to be the main source of metals from correlation analysis, principal component analysis (PCA), and cluster analysis (CA). According to the total heavy metal toxicity load (HMTL), 98.20%, 71.54%, 68.88%, and 7.97% of As, Cd, Sb, and Mn should be removed from the surface water to ensure safety. Most water samples from the surveyed area were found to have high ecological risk as was measured by the ecological risk index (RI). Health risk assessment showed that children are more susceptible than adults to the non-carcinogenic risk of dissolved metals, and the potential carcinogenic risk (CR) of As and Cd should be addressed. The results provide guidance for controlling the metal pollution of the Xiangjiang River and improving its quality as a drinking water source.


Functional analysis of tomato CHIP ubiquitin E3 ligase in heat tolerance.

  • Yan Zhang‎ et al.
  • Scientific reports‎
  • 2021‎

Plants have evolved genetic and physiological mechanisms to mitigate the adverse effects of high temperature. CARBOXYL TERMINUS OF THE HSC70-INTERACTING PROTEINS (CHIP) is a conserved chaperone-dependent ubiquitin E3 ligase that targets misfolded proteins. Here, we report functional analysis of the SlCHIP gene from tomato (Solanum lycopersicum) in heat tolerance. SlCHIP encodes a CHIP protein with three tandem tetracopeptide repeat (TPR) motifs and a C-terminal U box domain. Phylogenetic analysis of CHIP homologs from animals, spore-bearing and seed plants revealed a tree topology similar to the evolutionary tree of the organisms. Expression of SlCHIP was induced under high temperature and was also responsive to plant stress hormones. Silencing of SlCHIP in tomato reduced heat tolerance based on increased heat stress symptoms, reduced photosynthetic activity, elevated electrolyte leakage and accumulation of insoluble protein aggregates. The accumulated protein aggregates in SlCHIP-silenced plants were still highly ubiquitinated, suggesting involvement of other E3 ligases in ubiquitination. SlCHIP restored the heat tolerance of Arabidopsis chip mutant to the wild type levels. These results indicate that tomato SlCHIP plays a critical role in heat stress responses most likely by targeting degradation of misfolded proteins that are generated during heat stress.


VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions.

  • Osheiza Abdulmalik‎ et al.
  • Scientific reports‎
  • 2020‎

Sickle cell disease (SCD) results from a hemoglobin (Hb) mutation βGlu6 → βVal6 that changes normal Hb (HbA) into sickle Hb (HbS). Under hypoxia, HbS polymerizes into rigid fibers, causing red blood cells (RBCs) to sickle; leading to numerous adverse pathological effects. The RBC sickling is made worse by the low oxygen (O2) affinity of HbS, due to elevated intra-RBC concentrations of the natural Hb effector, 2,3-diphosphoglycerate. This has prompted the development of Hb modifiers, such as aromatic aldehydes, with the intent of increasing Hb affinity for O2 with subsequent prevention of RBC sickling. One such molecule, Voxelotor was recently approved by U.S. FDA to treat SCD. Here we report results of a novel aromatic aldehyde, VZHE-039, that mimics both the O2-dependent and O2-independent antisickling properties of fetal hemoglobin. The latter mechanism of action-as elucidated through crystallographic and biological studies-is likely due to disruption of key intermolecular contacts necessary for stable HbS polymer formation. This dual antisickling mechanism, in addition to VZHE-039 metabolic stability, has translated into significantly enhanced and sustained pharmacologic activities. Finally, VZHE-039 showed no significant inhibition of several CYPs, demonstrated efficient RBC partitioning and high membrane permeability, and is not an efflux transporter (P-gp) substrate.


Distribution and relative expression of vasoactive receptors on arteries.

  • Xinhao Liu‎ et al.
  • Scientific reports‎
  • 2020‎

Arterial tone is regulated by multiple ligand-receptor interactions, and its dysregulation is involved in ischemic conditions such as acute coronary spasm or syndrome. Understanding the distribution of vasoactive receptors on different arteries may help guide the development of tissue-specific vasoactive treatments against arterial dysfunction. Tissues were harvested from coronary, mesenteric, pulmonary, renal and peripheral human artery (n = 6 samples of each) and examined using a human antibody array to determine the expression of 29 vasoactive receptors and 3 endothelin ligands. Across all types of arteries, outer diameter ranged from 2.24 ± 0.63 to 3.65 ± 0.40 mm, and AVPR1A was the most abundant receptor. The expression level of AVPR1A in pulmonary artery was similar to that in renal artery, 2.2 times that in mesenteric artery, 1.9 times that in peripheral artery, and 2.2 times that in coronary artery. Endothelin-1 was expressed at significantly higher levels in pulmonary artery than peripheral artery (8.8 times), mesenteric artery (5.3 times), renal artery (7.9 times), and coronary artery (2.4 times). Expression of ADRA2B was significantly higher in coronary artery than peripheral artery. Immunohistochemistry revealed abundant ADRA2B in coronary artery, especially vessels with diameters below 50 μm, but not in myocardium. ADRA2C, in contrast, was expressed in both myocardium and blood vessels. The high expression of ADRA2B in coronary artery but not myocardium highlights the need to further characterize its function. Our results help establish the distribution and relative levels of tone-related receptors in different types of arteries, which may guide artery-specific treatments.


MIF inhibitor, ISO-1, attenuates human pancreatic cancer cell proliferation, migration and invasion in vitro, and suppresses xenograft tumour growth in vivo.

  • Bo Cheng‎ et al.
  • Scientific reports‎
  • 2020‎

This study sought to investigate the biological effects of specific MIF inhibitor, ISO-1, on the proliferation, migration and invasion of PANC-1 human pancreatic cells in vitro, and on tumour growth in a xenograft tumour model in vivo. The effect of ISO-1 on PANC-1 cell proliferation was examined using CCK-8 cell proliferation assay. The effect of ISO-1 on collective cell migration and recolonization of PANC-1 cells was evaluated using the cell-wound closure migration assay. The effect of ISO-1 on the migration and invasion of individual PANC-1 cells in a 3-dimensional environment in response to a chemo-attractant was investigated through the use of Transwell migration/invasion assays. Quantitative real time PCR and western blot analyses were employed to investigate the effects of ISO-1 on MIF, NF-κB p65 and TNF-α mRNA and protein expression respectively. Finally, a xenograft tumor model in BALB/c nude mice were used to assess the in vivo effects of ISO-1 on PANC-1-induced tumor growth. We found high expression of MIF in pancreatic cancer tissues. We demonstrated that ISO-1 exerts anti-cancer effects on PANC-1 cell proliferation, migration and invasion in vitro, and inhibited PANC-1 cell-induced tumour growth in xenograft mice in vivo. Our data suggests that ISO-1 and its derivative may have potential therapeutic applications in pancreatic cancer.


Quality comparison of "Laba" garlic processed by High Hydrostatic Pressure and High Pressure Carbon Dioxide.

  • Dandan Tao‎ et al.
  • Scientific reports‎
  • 2020‎

The production of "Laba" garlic is limited to the homemade method with long processing time and non-uniform color quality. Innovative food processing technologies including high hydrostatic pressure (HHP) and high pressure carbon dioxide (HPCD) were applied to the processing of "Laba" garlic. Products prepared at different treatment pressures (200, 350 and 500 MPa of HHP; 4, 7 and 10 MPa of HPCD) were compared by evaluating the texture, color, flavor and sensory qualities. The results indicated that HHP treatment at 200 MPa was optimal for retaining the textural quality of "Laba" garlic, which was mainly attributed to the compacted cells and the increased Ca2+-cross linked cell-cell adhesion. HHP had greater effect on facilitating the formation of the attractive green color of "Laba" garlic than HPCD. The flavor profiles of "Laba" garlic were modified after treatments, with pungent compounds decreased to non-detectable. The results from sensory study confirmed that "Laba" garlic treated by HHP at 200 MPa was most acceptable to consumers. Moreover, considering the treatment capacity and feasibility of commercialization, HHP would be a promising technology in production of "Laba" garlic with improved quality and efficiency.


RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Chronic Hepatitis and Acute-on-chronic Liver Failure Caused By HBV.

  • Jiajia Chen‎ et al.
  • Scientific reports‎
  • 2020‎

Hepatitis B virus (HBV) is the main causative viral agent for liver diseases in China. In liver injury, exosomes may impede the interaction with chromatin in the target cell and transmit inflammatory, apoptosis, or regeneration signals through RNAs. Therefore, we attempted to determine the potential functions of exosomal RNAs using bioinformatics technology. We performed RNA sequencing analysis in exosomes derived from clinical specimens of healthy control (HC) individuals and patients with chronic hepatitis B (CHB) and acute-on-chronic liver failure caused by HBV (HBV-ACLF). This analysis resulted in the identification of different types and proportions of RNAs in exosomes from the HC individuals and patients. Exosomes from the CHB and HBV-ACLF patients showed distinct upregulation and downregulation patterns of differentially expressed genes compared with those from the HC subjects. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway analysis further confirmed different patterns of biological functions and signalling pathways in CHB and HBV-ACLF. Then we chose two upregulated RNAs both in CHB and HBV-ACLF for further qPCR validation. It confirmed the significantly different expression levels in CHB and HBV-ACLF compared with HC. Our findings indicate selective packaging of the RNA cargo into exosomes under different HBV attacks; these may represent potential targets for the diagnosis and treatment of HBV-caused liver injury.


Emergence of ON1 genotype of human respiratory syncytial virus subgroup A in China between 2011 and 2015.

  • Jinhua Song‎ et al.
  • Scientific reports‎
  • 2017‎

A molecular epidemiological study of human respiratory syncytial virus (HRSV) was conducted to examine the distribution of its subgroups and genotypes, as well as to identify its transmission pattern in China. A total of 705 samples collected from 9 provinces in China between January 2008 and February 2015 were identified as HRSV-positive and were subsequently sequenced. Of these, 336 samples were HRSV subgroup A (HRSVA), 368 samples were HRSV subgroup B (HRSVB), and 1 sample contained both HRSVA and HRSVB. These 705 HRSV sequences, together with 766 HRSV sequences downloaded from GenBank, were analyzed to understand the recent circulation patterns of HRSV in China. HRSVB predominated in the 2008/2009 and 2009/2010 seasons, whereas HRSVA predominated in the 2010/2011 and 2011/2012 seasons; HRSVA and HRSVB co-circulated during 2012/2013 and 2014/2015. Phylogenetic analysis showed most of the HRSVA sequences clustered into 2 genotypes, namely, NA1 and ON1. The ON1 genotype was first detected in China in 2011, and it quickly replaced the NA1 genotype to become the most prevalent HRSVA genotype circulating in China between 2013 and 2015. Continuous epidemiological surveillance and molecular characterization of HRSV should be conducted to monitor the evolution of HRSV in China.


Let-7c regulated epithelial-mesenchymal transition leads to osimertinib resistance in NSCLC cells with EGFR T790M mutations.

  • Xiao-Feng Li‎ et al.
  • Scientific reports‎
  • 2020‎

Epidermal growth factor receptor- tyrosine kinase inhibitors (EGFR-TKIs) have shown promise against non-small cell lung cancers (NSCLCs) in clinics but the utility is often short-lived because of T790M mutations in EGFR that help evade TKIs' action. Osimertinib is the third and latest generation TKI that targets EGFRs with T790M mutations. However, there are already reports on acquired resistance against Osimertinib. Recent work has revealed the role that miRNAs, particularly tumor suppressor let-7c, play in the invasiveness and acquired resistance of NSCLCs, but the mechanistic details, particularly in Osimertinib resistance, remain elusive. Using two cells lines, H1975 (endogenous T790M mutation) and HCC827-T790M (with acquired T790M mutation), we found that let-7c is a regulator of EMT, as well as it affects CSC phenotype. In both the cell lines, transfection with pre-let-7c led to reversal of EMT as studied through EMT markers e-cadherin and ZEB1. This resulted in reduced proliferation and invasion. Conversely, reduced expression of let-7c through anti-let-7c transfections significantly increased proliferation and invasion of lung cancer cells. Expression of let-7c was functionally relevant as EMT correlated with resistance to Osimertinib. High let-7c expression reversed EMT and made cells sensitive to Osimertinib, and vice versa. WNT1 and TCF-4 were found to be two targets of let-7c which were epigenetic suppressed by let-7c through increased methylation. In vivo, pre-let-7c inhibited while anti-let-7c potentiated tumor growth and WNT1 and TCF-4 were downregulated in xenografts with pre-let-7c. Silencing of both WNT1 and TCF-4 resulted in potentiation of Osimertinib action. Our results suggest an important role of let-7c in regulating EMT and the resulting Osimertinib resistance in T790M NSCLCs. More clinical studies need to be performed to fully understand the translational relevance of this novel mechanism.


Involvement of GLWamide neuropeptides in polyp contraction of the adult stony coral Euphyllia ancora.

  • Shinya Shikina‎ et al.
  • Scientific reports‎
  • 2020‎

The existence and function of neurons remain largely unexplored in scleractinian corals. To gain a better understanding of neuronal functions in coral physiology, this study focused on Glycine-Leucine-Tryptophan-amide family neuropeptides (GLWamides), which have been shown to induce muscle contraction and larval metamorphosis in other cnidarians. Molecular identification and functional characterization of GLWamides in the adult stony coral Euphyllia ancora were performed. We successfully elucidated the full-length cDNA of GLWamide preprohormone in E. ancora (named EaGLW preprohormone). The deduced amino acid sequence was predicted to contain six potential GLWamide peptides. Tissue distribution analysis demonstrated that transcripts of EaGLW preprohormone were mainly expressed in the mouth (including the pharynx) and tentacles of the polyps. Immunodetection with an anti-GLWamide monoclonal antibody revealed that GLWamide neurons were mainly distributed in the epidermis of the mouth region and tentacle, in agreement with the distribution patterns of the transcripts. Treatment of the isolated mouth and tentacles with synthetic GLWamide peptides induced the contraction of these isolated tissues. Treatment of polyps with synthetic GLWamide peptides induced the contraction of polyps. These results suggest that GLWamides are involved in polyp contraction (myoactivity) in adult scleractinians. Our data provide new information on the physiological function of neuropeptides in scleractinians.


Correlation between electrical characteristics and biomarkers in breast cancer cells.

  • Yang Wang‎ et al.
  • Scientific reports‎
  • 2021‎

Both electrical properties and biomarkers of biological tissues can be used to distinguish between normal and diseased tissues, and the correlations between them are critical for clinical applications of conductivity (σ) and permittivity (ε); however, these correlations remain unknown. This study aimed to investigate potential correlations between electrical characteristics and biomarkers of breast cancer cells (BCC). Changes in σ and ε of different components in suspensions of normal cells and BCC were analyzed in the range of 200 kHz-5 MHz. Pearson's correlation coefficient heatmap was used to investigate the correlation between σ and ε of the cell suspensions at different stages and biomarkers of cell growth and microenvironment. σ and ε of the cell suspensions closely resembled those of tissues. Further, the correlations between Na+/H+ exchanger 1 and ε and σ of cell suspensions were extremely significant among all biomarkers (pε < 0.001; pσ < 0.001). There were significant positive correlations between cell proliferation biomarkers and ε and σ of cell suspensions (pε/σ < 0.05). The microenvironment may be crucial in the testing of cellular electrical properties. ε and σ are potential parameters to characterize the development of breast cancer.


LncRNA-AK149641 regulates the secretion of tumor necrosis factor-α in P815 mast cells by targeting the nuclear factor-kappa B signaling pathway.

  • Yao Zhou‎ et al.
  • Scientific reports‎
  • 2020‎

Long noncoding RNAs play important roles in various biological processes. However, not much is known about their roles in inflammatory response. Mast cells, involved in innate and adaptive immunity, are one of the major effector cells in allergic inflammatory reactions and contribute to the pathogenesis of disorders, including asthma. In the present study, we aimed to verify and elucidate the function and possible role of a novel lncRNA, called lncRNA-AK149641, in the mechanism of lipopolysaccharide (LPS)-induced inflammatory response in P815 mast cells. The results showed that downregulating lncRNA-AK149641 decreased secretion of tumor necrosis factor-α into the supernatants of LPS-stimulated mast cells. Mechanistically, the activity of nuclear factor-kappa B (NF-κB) decreased after downregulating lncRNA-AK149641, as shown by western blot and electrophoretic mobility shift assays. Moreover, RNA binding protein immunoprecipitation (RIP) verified that lncRNA-AK149641 was able to bind to NF-κB in the nucleus. In conclusion, we demonstrated that lncRNA-AK149641 regulated LPS-induced inflammatory response in mast cells through the NF-κB signaling pathway.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: