Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 46 papers out of 46 papers

New power of self-assembling carbonic anhydrase inhibitor: Short peptide-constructed nanofibers inspire hypoxic cancer therapy.

  • Jiayang Li‎ et al.
  • Science advances‎
  • 2019‎

Carbonic anhydrase (CA) IX overexpresses exclusively on cell membranes of hypoxic tumors, regulating the acidic tumor microenvironment. Small molecules of CA inhibitor modified with short peptide successfully achieve CA IX-targeted self-assembly that localizes CA inhibitors on hypoxic cancer cell surfaces and enhances their inhibition efficacy and selectivity. CA IX-related endocytosis also promotes selective intracellular uptake of these nanofibers under hypoxia, in which nanofiber structures increase in size with decreasing pH. This effect subsequently causes intracellular acid vesicle damage and blocks protective autophagy. The versatility of tunable nanostructures responding to cell milieu impressively provokes selective toxicities and provides strategic therapy for hypoxic tumors. Moreover, in vivo tests demonstrate considerable antimetastatic and antiangiogenesis effects in breast tumors, and particularly remarkable enhancement of antitumor efficacy in doxorubicin administration. With its biocompatible components and distinctive hypoxia therapies, this nanomaterial advances current chemotherapy, providing a new direction for hypoxic cancer therapy.


CSAD Ameliorates Lipid Accumulation in High-Fat Diet-Fed Mice.

  • Rongrong Tan‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic disease manifested in hepatic steatosis, inflammation, fibrosis, etc., which affects over one-quarter of the population around the world. Since no effective therapeutic drugs are available to cope with this widespread epidemic, the functional research of genes with altered expression during NAFLD helps understand the pathogenesis of this disease and the development of new potential therapeutic targets for drugs. In the current work, we discovered via the analysis of the Gene Expression Omnibus (GEO) dataset that cysteine sulfinic acid decarboxylase (CSAD) decreased significantly in NAFLD patients, which was also confirmed in multiple NAFLD mouse models (HFD-fed C57BL/6J, db/db and HFHFrHC-fed C57BL/6J mice). Next, CSAD's function in the progression of NAFLD was explored using AAV-mediated liver-directed gene overexpression in an HFD-fed mouse model, where the overexpression of CSAD in the liver could alleviate NAFLD-associated pathologies, including body weight, liver/body weight ratio, hepatic triglyceride and total cholesterol, and the degree of steatosis. Mechanically, we found that the overexpression of CSAD could increase the expression of some genes related to fatty acid β-oxidation (Acad1, Ppara, and Acox1). Furthermore, we also detected that CSAD could improve mitochondrial injury in vitro and in vivo. Finally, we proposed that the effect of CSAD on lipid accumulation might be independent of the taurine pathway. In conclusion, we demonstrated that CSAD is involved in the development of NAFLD as a protective factor, which suggested that CSAD has the potential to become a new target for drug discovery in NAFLD.


A super pan-genomic landscape of rice.

  • Lianguang Shang‎ et al.
  • Cell research‎
  • 2022‎

Pan-genomes from large natural populations can capture genetic diversity and reveal genomic complexity. Using de novo long-read assembly, we generated a graph-based super pan-genome of rice consisting of a 251-accession panel comprising both cultivated and wild species of Asian and African rice. Our pan-genome reveals extensive structural variations (SVs) and gene presence/absence variations. Additionally, our pan-genome enables the accurate identification of nucleotide-binding leucine-rich repeat genes and characterization of their inter- and intraspecific diversity. Moreover, we uncovered grain weight-associated SVs which specify traits by affecting the expression of their nearby genes. We characterized genetic variants associated with submergence tolerance, seed shattering and plant architecture and found independent selection for a common set of genes that drove adaptation and domestication in Asian and African rice. This super pan-genome facilitates pinpointing of lineage-specific haplotypes for trait-associated genes and provides insights into the evolutionary events that have shaped the genomic architecture of various rice species.


Icariside II Restores Vascular Smooth Muscle Cell Contractile Phenotype by Enhancing the Focal Adhesion Signaling Pathway in the Rat Vascular Remodeling Model.

  • Junyuan Lv‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Vascular smooth muscle cell (VSMC) phenotypic transition represents the fundamental pathophysiological alteration in the vascular remodeling process during the initiation and progression of cardiovascular diseases. Recent studies have revealed that Icariside II (ICS-II), a flavonol glycoside derived from the traditional Chinese medicine Herba Epimedii, exhibited therapeutic effects in various cardiovascular diseases. However, the therapeutic efficacy and underlying mechanisms of ICS-II regarding VSMC phenotypic transition were unknown. In this study, we investigated the therapeutic effects of ICS-Ⅱ on vascular remodeling with a rat's balloon injury model in vivo. The label-free proteomic analysis was further implemented to identify the differentially expressed proteins (DEPs) after ICS-II intervention. Gene ontology and the pathway enrichment analysis were performed based on DEPs. Moreover, platelet-derived growth factor (PDGF-BB)-induced primary rat VSMC was implemented to verify the restoration effects of ICS-II on the VSMC contractile phenotype. Results showed that ICS-II could effectively attenuate the vascular remodeling process, promote SMA-α protein expression, and inhibit OPN expression in vivo. The proteomic analysis identified 145 differentially expressed proteins after ICS-II intervention. Further, the bioinformatics analysis indicated that the focal adhesion signaling pathway was enriched in the ICS-II group. In vitro studies showed that ICS-II suppressed VSMC proliferation and migration, and promoted VSMC contractile phenotype by modulating the focal adhesion signaling pathway. Taken together, our results suggest that ICS-II attenuates the vascular remodeling process and restores the VSMC contractile phenotype by promoting the focal adhesion pathway.


Itaconate inhibits SYK through alkylation and suppresses inflammation against hvKP induced intestinal dysbiosis.

  • Yangguang Li‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.


Plasma exosomes improve peripheral neuropathy via miR-20b-3p/Stat3 in type I diabetic rats.

  • Jiayang Li‎ et al.
  • Journal of nanobiotechnology‎
  • 2023‎

Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes and the main cause of non-traumatic amputation, with no ideal treatment. Multiple cell-derived exosomes have been reported to improve the progression of DPN. Blood therapy is thought to have a powerful repairing effect. However, whether it could also improve DPN remains unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: