Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 103 papers

Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability.

  • Rosalind Law‎ et al.
  • American journal of human genetics‎
  • 2014‎

Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density.


Homozygosity mapping reveals novel and known mutations in Pakistani families with inherited retinal dystrophies.

  • Muhammad Arif Nadeem Saqib‎ et al.
  • Scientific reports‎
  • 2015‎

Inherited retinal dystrophies are phenotypically and genetically heterogeneous. This extensive heterogeneity poses a challenge when performing molecular diagnosis of patients, especially in developing countries. In this study, we applied homozygosity mapping as a tool to reduce the complexity given by genetic heterogeneity and identify disease-causing variants in consanguineous Pakistani pedigrees. DNA samples from eight families with autosomal recessive retinal dystrophies were subjected to genome wide homozygosity mapping (seven by SNP arrays and one by STR markers) and genes comprised within the detected homozygous regions were analyzed by Sanger sequencing. All families displayed consistent autozygous genomic regions. Sequence analysis of candidate genes identified four previously-reported mutations in CNGB3, CNGA3, RHO, and PDE6A, as well as three novel mutations: c.2656C > T (p.L886F) in RPGRIP1, c.991G > C (p.G331R) in CNGA3, and c.413-1G > A (IVS6-1G > A) in CNGB1. This latter mutation impacted pre-mRNA splicing of CNGB1 by creating a -1 frameshift leading to a premature termination codon. In addition to better delineating the genetic landscape of inherited retinal dystrophies in Pakistan, our data confirm that combining homozygosity mapping and candidate gene sequencing is a powerful approach for mutation identification in populations where consanguineous unions are common.


MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells.

  • Rizwan Yousaf‎ et al.
  • Disease models & mechanisms‎
  • 2015‎

MAP3K1 is a serine/threonine kinase that is activated by a diverse set of stimuli and exerts its effect through various downstream effecter molecules, including JNK, ERK1/2 and p38. In humans, mutant alleles of MAP3K1 are associated with 46,XY sex reversal. Until recently, the only phenotype observed in Map3k1(tm1Yxia) mutant mice was open eyelids at birth. Here, we report that homozygous Map3k1(tm1Yxia) mice have early-onset profound hearing loss accompanied by the progressive degeneration of cochlear outer hair cells. In the mouse inner ear, MAP3K1 has punctate localization at the apical surface of the supporting cells in close proximity to basal bodies. Although the cytoarchitecture, neuronal wiring and synaptic junctions in the organ of Corti are grossly preserved, Map3k1(tm1Yxia) mutant mice have supernumerary functional outer hair cells (OHCs) and Deiters' cells. Loss of MAP3K1 function resulted in the downregulation of Fgfr3, Fgf8, Fgf10 and Atf3 expression in the inner ear. Fgfr3, Fgf8 and Fgf10 have a role in induction of the otic placode or in otic epithelium development in mice, and their functional deficits cause defects in cochlear morphogenesis and hearing loss. Our studies suggest that MAP3K1 has an essential role in the regulation of these key cochlear morphogenesis genes. Collectively, our data highlight the crucial role of MAP3K1 in the development and function of the mouse inner ear and hearing.


A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

  • Keith S K Fong‎ et al.
  • Disease models & mechanisms‎
  • 2016‎

Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse.


NS4A protein as a marker of HCV history suggests that different HCV genotypes originally evolved from genotype 1b.

  • Muhammad T Sarwar‎ et al.
  • Virology journal‎
  • 2011‎

The 9.6 kb long RNA genome of Hepatitis C virus (HCV) is under the control of RNA dependent RNA polymerase, an error-prone enzyme, for its transcription and replication. A high rate of mutation has been found to be associated with RNA viruses like HCV. Based on genetic variability, HCV has been classified into 6 different major genotypes and 11 different subtypes. However this classification system does not provide significant information about the origin of the virus, primarily due to high mutation rate at nucleotide level. HCV genome codes for a single polyprotein of about 3011 amino acids which is processed into structural and non-structural proteins inside host cell by viral and cellular proteases.


Molecular and clinical studies of X-linked deafness among Pakistani families.

  • Ali M Waryah‎ et al.
  • Journal of human genetics‎
  • 2011‎

There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132 and PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild-to-profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling and molecular epidemiology of hearing loss among Pakistanis.


USH1K, a novel locus for type I Usher syndrome, maps to chromosome 10p11.21-q21.1.

  • Thomas J Jaworek‎ et al.
  • Journal of human genetics‎
  • 2012‎

We ascertained two large Pakistani consanguineous families (PKDF231 and PKDF608) segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa; the defining features of Usher syndrome type 1 (USH1). To date, seven USH1 loci have been reported. Here, we map a novel locus, USH1K, on chromosome 10p11.21-q21.1. In family PKDF231, we performed a genome-wide linkage screen and found a region of homozygosity shared among the affected individuals at chromosome 10p11.21-q21.1. Meiotic recombination events in family PKDF231 define a critical interval of 11.74 cM (20.20 Mb) bounded by markers D10S1780 (63.83 cM) and D10S546 (75.57 cM). Affected individuals of family PKDF608 were also homozygous for chromosome 10p11.21-q21.1-linked STR markers. Of the 85 genes within the linkage interval, PCDH15, GJD4, FZD4, RET and LRRC18 were sequenced in both families, but no potential pathogenic mutation was identified. The USH1K locus overlaps the non-syndromic deafness locus DFNB33 raising the possibility that the two disorders may be caused by allelic mutations.


Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability.

  • Muzammil Ahmad Khan‎ et al.
  • American journal of human genetics‎
  • 2012‎

Causes of autosomal-recessive intellectual disability (ID) have, until very recently, been under researched because of the high degree of genetic heterogeneity. However, now that genome-wide approaches can be applied to single multiplex consanguineous families, the identification of genes harboring disease-causing mutations by autozygosity mapping is expanding rapidly. Here, we have mapped a disease locus in a consanguineous Pakistani family affected by ID and distal myopathy. We genotyped family members on genome-wide SNP microarrays and used the data to determine a single 2.5 Mb homozygosity-by-descent (HBD) locus in region 5p15.32-p15.31; we identified the missense change c.2035G>A (p.Gly679Arg) at a conserved residue within NSUN2. This gene encodes a methyltransferase that catalyzes formation of 5-methylcytosine at C34 of tRNA-leu(CAA) and plays a role in spindle assembly during mitosis as well as chromosome segregation. In mouse brains, we show that NSUN2 localizes to the nucleolus of Purkinje cells in the cerebellum. The effects of the mutation were confirmed by the transfection of wild-type and mutant constructs into cells and subsequent immunohistochemistry. We show that mutation to arginine at this residue causes NSUN2 to fail to localize within the nucleolus. The ID combined with a unique profile of comorbid features presented here makes this an important genetic discovery, and the involvement of NSUN2 highlights the role of RNA methyltransferase in human neurocognitive development.


Mutations in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse.

  • Rizwan Yousaf‎ et al.
  • PLoS genetics‎
  • 2018‎

Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chromosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associated hearing loss in two large apparently unrelated Pakistani families. PPIP5Ks enzymes interconvert 5-IP7 and IP8, two key members of the inositol pyrophosphate (PP-IP) cell-signaling family. Their actions at the interface of cell signaling and bioenergetic homeostasis can impact many biological processes. The c.2510G>A transition variant is predicted to substitute a highly invariant arginine residue with histidine (p.Arg837His) in the phosphatase domain of PPIP5K2. Biochemical studies revealed that the p.Arg837His variant reduces the phosphatase activity of PPIP5K2 and elevates its kinase activity. We found that in mouse inner ear, PPIP5K2 is expressed in the cochlear and vestibular sensory hair cells, supporting cells and spiral ganglion neurons. Mice homozygous for a targeted deletion of the Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and elevated hearing thresholds. Our demonstration that PPIP5K2 has a role in hearing in humans indicates that PP-IP signaling is important to hair cell maintenance and function within inner ear.


Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells.

  • Artur A Indzhykulian‎ et al.
  • PLoS biology‎
  • 2013‎

Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.


A new autosomal recessive nonsyndromic hearing impairment locus DFNB96 on chromosome 1p36.31-p36.13.

  • Muhammad Ansar‎ et al.
  • Journal of human genetics‎
  • 2011‎

A novel locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI), DFNB96, was mapped to the 1p36.31-p36.13 region. A whole-genome linkage scan was performed using DNA samples from a consanguineous family from Pakistan with ARNSHI. A maximum two-point logarithm of odds (LOD) score of 3.2 was obtained at marker rs8627 (chromosome 1: 8.34 Mb) at θ=0 and a significant maximum multipoint LOD score of 3.8 was achieved at 15 contiguous markers from rs630075 (9.3 Mb) to rs10927583 (15.13 Mb). The 3-unit support interval and the region of homozygosity were both delimited by markers rs3817914 (6.42 Mb) and rs477558 (18.09 Mb) and contained 11.67 Mb. Of the 125 genes within the DFNB96 interval, the previously identified ARNSHI gene for DFNB36, ESPN, and two genes that cause Bartter syndrome, CLCNKA and CLCNKB, were sequenced, but no potentially causal variants were identified.


Mutations of ESRRB encoding estrogen-related receptor beta cause autosomal-recessive nonsyndromic hearing impairment DFNB35.

  • Rob W J Collin‎ et al.
  • American journal of human genetics‎
  • 2008‎

In a large consanguineous family of Turkish origin, genome-wide homozygosity mapping revealed a locus for recessive nonsyndromic hearing impairment on chromosome 14q24.3-q34.12. Fine mapping with microsatellite markers defined the critical linkage interval to a 18.7 cM region flanked by markers D14S53 and D14S1015. This region partially overlapped with the DFNB35 locus. Mutation analysis of ESRRB, a candidate gene in the overlapping region, revealed a homozygous 7 bp duplication in exon 8 in all affected individuals. This duplication results in a frame shift and premature stop codon. Sequence analysis of the ESRRB gene in the affected individuals of the original DFNB35 family and in three other DFNB35-linked consanguineous families from Pakistan revealed four missense mutations. ESRRB encodes the estrogen-related receptor beta protein, and one of the substitutions (p.A110V) is located in the DNA-binding domain of ESRRB, whereas the other three are substitutions (p.L320P, p.V342L, and p.L347P) located within the ligand-binding domain. Molecular modeling of this nuclear receptor showed that the missense mutations are likely to affect the structure and stability of these domains. RNA in situ hybridization in mice revealed that Esrrb is expressed during inner-ear development, whereas immunohistochemical analysis showed that ESRRB is present postnatally in the cochlea. Our data indicate that ESRRB is essential for inner-ear development and function. To our knowledge, this is the first report of pathogenic mutations of an estrogen-related receptor gene.


Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome.

  • Saima Riazuddin‎ et al.
  • BMC medical genetics‎
  • 2011‎

Recessive mutations of fibroblast growth factor 3 (FGF3) can cause LAMM syndrome (OMIM 610706), characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia.


Sequencing and Characterization of Mitochondrial Protein-Coding Genes for Schizothorax niger (Cypriniformes: Cyprinidae) with Phylogenetic Consideration.

  • Tasleem Akhtar‎ et al.
  • BioMed research international‎
  • 2020‎

The present study was conducted to get more information about the genome and locate the taxonomic position of Schizothorax niger in Schizothoracinae through mitochondrial 13 protein-coding genes (PCGs). These PCGs for S. niger were found to be 11409 bps in length ranging from 165 (ATPase 8) to 1824 bps (NADH dehydrogenase subunit 5) and encode 3801 amino acids. In these PCGs, 4 genes overlap on the similar strands, while one shown on the opposite one: ATPase 6+8 and NADH dehydrogenase subunit 4+4L overlap by 7 nucleotides. Similarly, ND5-ND6 overlap by 4 nucleotides, while ATP6 and COIII overlap by 1 nucleotide. Similarly, four commonly used amino acids in S. niger were Leu (15.6 %), Ile (10.12 %), Thr (8.12 %), and Ala (8.7 %). The results presented that COII, COIII, NDI, ND4L, and Cytb had substantial amino acid conservation as compared to the COI gene. Through phylogenetic analysis, it was observed that S. niger is closely linked with S. progastus, S. labiatus, S. plagiostomus, and S. nepalensis with high bootstrap values. The present study provided more genomic data to know the diversity of the mitochondrial genome and its molecular evolution in Schizothoracinae.


Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder.

  • Francesca Mattioli‎ et al.
  • NPJ genomic medicine‎
  • 2021‎

Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a-/- mouse model showed behavioral changes.


Identification of Frameshift Variants in POLH Gene Causing Xeroderma Pigmentosum in Two Consanguineous Pakistani Families.

  • Ghazala Y Zamani‎ et al.
  • Genes‎
  • 2022‎

Xeroderma pigmentosum (XP) is a rare autosomal recessive genetic disorder characterized by severe sensitivity of skin to sunlight and an increased risk of skin cancer. XP variant (XPV), a milder subtype, is caused by variants in the POLH gene. POLH encodes an error-prone DNA-polymerase eta (pol eta) which performs translesion synthesis past ultraviolet photoproducts. The current study documents the clinical and genetic investigations of two large consanguineous Pakistani families affected with XPV. In family 1, whole exome sequencing (WES) revealed a novel frameshift variant, c.1723dupG (p.(Val575Glyfs*4)), of POLH, which is predicted to cause frameshift and premature truncation of the encoded enzyme. Indeed, our ex vivo studies in HEK293T cells confirmed the truncation of the encoded protein due to the c.1723dupG variant. In family 2, Sanger sequencing of POLH exons, revealed a recurrent nonsense variant, c.437dupA (p.Tyr146*). POLH forms a hetero-tetrameric POLZ complex with REV3L, REV7, POLD2 and POLD3. Next, we performed in silico analysis of POLH and other POLZ complex genes expression in publicly available single cell mRNAseq datasets from adult human healthy and aging skin. We found overlapping expression of POLH, REV3L and POLD2 in multiple cell types including differentiated and undifferentiated keratinocytes, pericytes and melanocytes in healthy skin. However, in aging human skin, POLH expression is reduced in compare to its POLZ complex partners. Insights from our study will facilitate counseling regarding the molecular and phenotypic landscape of POLH-related XPV.


Identification of Hearing Loss-Associated Variants of PTPRQ, MYO15A, and SERPINB6 in Pakistani Families.

  • Umair Mahmood‎ et al.
  • BioMed research international‎
  • 2021‎

The inner ear is an essential part of a well-developed and well-coordinated hearing system. However, hearing loss can make communication and interaction more difficult. Inherited hearing loss (HL) can occur from pathogenic genetic variants that negatively alter the intricate inner ear sensory mechanism. Recessively inherited forms of HL are highly heterogeneous and account for a majority of prelingual deafness. The current study is designed to investigate genetic causes of HL in three consanguineous Pakistani families. After IRB approval, the clinical history and pure tone audiometric data was obtained for the clinical diagnosis of HL segregating in these three Pakistani families. We performed whole exome sequencing (WES) followed by Sanger sequencing in order to identify and validate the HL-associated pathogenic variants, respectively. The 3-D molecular modeling and the Ramachandran analysis of the identified missense variants were compiled to evaluate the impact of the variants on the encoded proteins. Clinical evaluation revealed prelingual severe to profound sensorineural HL segregating among the affected individuals in all three families. Genetic analysis revealed segregation of several novel variants associated with HL, including a canonical splice-site variant (c.55-2A>G) of PTPRQ in family GCFHL-01, a missense variant [c.1079G>A; p.(Arg360Gln)] of SERPINB6 in family LUHL-01, and an insertion variant (c.10208-10211insCCACCAGGCCCGTGCCTC) within MYO15A in family LUHL-011. All the identified variants had very low frequencies in the control databases. The molecular modeling of p.Arg360Gln missense variant also predicted impaired folding of SERPINB6 protein. This study reports the identification of novel disease-causing variants in three known deafness genes and further highlights the genetic heterogeneity of HL in Pakistani population.


A novel pathogenic missense variant in CNNM4 underlying Jalili syndrome: Insights from molecular dynamics simulations.

  • Asia Parveen‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Jalili syndrome (JS) is a rare cone-rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly.


Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss.

  • Elodie M Richard‎ et al.
  • American journal of human genetics‎
  • 2021‎

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families.

  • Asmat Ullah‎ et al.
  • Molecular vision‎
  • 2017‎

To investigate the molecular basis of Bardet-Biedl syndrome (BBS) in five consanguineous families of Pakistani origin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: