Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 117 papers

Trigeminal ganglion and sensory nerves suggest tactile specialization of elephants.

  • Leopold Purkart‎ et al.
  • Current biology : CB‎
  • 2022‎

Sensory nerves are information bottlenecks giving rise to distinct sensory worlds across animal species.1 Here, we investigate trigeminal ganglion2,3 and sensory nerves4 of elephants. The elephant trigeminal ganglion is very large. Its maxillary branch, which gives rise to the infraorbital nerve innervating the trunk, has a larger diameter than the animal's spinal cord, i.e., trunk innervation is more substantive than connections of the brain to the rest of the body. Hundreds of satellite cells surround each trigeminal neuron, an indication of exceptional glial support to these large projection neurons.5-7 Fiber counts of Asian elephant infraorbital nerves of averaged 4,00,000 axons. The infraorbital nerve consists of axons that are ∼10 μm thick and it has a large diameter of 17 mm, roughly 3 times as thick as the optic and 6 times as thick as the vestibulocochlear nerve. In most mammals (including tactile specialists) optic nerve fibers8-10 greatly outnumber infraorbital nerve fibers,11,12 but in elephants the infraorbital nerve fiber count is only slightly lower than the optic nerve fiber count. Trunk innervation (nerves and ganglia) weighs ∼1.5 kg in elephant cows. Our findings characterize the elephant trigeminal ganglion as one of the largest known primary sensory structures and point to a high degree of tactile specialization in elephants.


Constant innervation despite pubertal growth of the mouse penis.

  • Leopold Purkart‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

The sexual characteristics of the vertebrate body change under the control of sex hormones. In mammals, genitals undergo major changes in puberty. While such bodily changes have been well documented, the associated changes in the nervous system are poorly understood. To address this issue, we studied the growth and innervation of the mouse penis throughout puberty. To this end, we measured length and thickness of the mouse penis in prepubertal (3-4 week old) and adult (8-10 week old) mice and performed fiber counts of the dorsal penile nerve. We obtained such counts with confocal imaging of proximal sections of the mouse penis after paraffin embedding and antibody staining against Protein-Gene-Product-9.5 or Neurofilament-H in combination with antigen retrieval procedures. We find that the mouse penis grows roughly 1.4 times in both thickness and length. Fiber counts in the dorsal penile nerve were not different in prepubertal (1,620 ± 165 fibers per penis) and adult (1,572 ± 383 fibers per penis) mice, however. Antibody staining along with myelin staining by Luxol-Fast-Blue suggested about 57% of penile nerve fibers were myelinated. Quantification of the area of mouse somatosensory penis cortex allowed us to compare cortical magnification of the penile cortex and the whisker-barrel-cortex systems. This comparison suggested that 2 to 4 times less cortical area is devoted to a penile-nerve-fiber than to a whisker-nerve-fiber. The constant innervation of mouse penis through puberty suggests that the pubertal increase of cortical magnification of the penis is not simply a reflection of peripheral change.


Subiculum as a generator of sharp wave-ripples in the rodent hippocampus.

  • Barbara Imbrosci‎ et al.
  • Cell reports‎
  • 2021‎

Sharp wave-ripples (SWRs) represent synchronous discharges of hippocampal neurons and are believed to play a major role in memory consolidation. A large body of evidence suggests that SWRs are exclusively generated in the CA3-CA2 network. In contrast, here, we provide several lines of evidence showing that the subiculum can function as a secondary SWRs generator. SWRs with subicular origin propagate forward into the entorhinal cortex as well as backward into the hippocampus proper. Our findings suggest that the output structures of the hippocampus are not only passively facilitating the transfer of SWRs to the cortex, but they also can actively contribute to the genesis of SWRs. We hypothesize that SWRs with a subicular origin may be important for the consolidation of information conveyed to the hippocampus via the temporoammonic pathway.


Cell-Type Specific Inhibition Controls the High-Frequency Oscillations in the Medial Entorhinal Cortex.

  • Shalva Gurgenidze‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The medial entorhinal cortex (mEC) plays a critical role for spatial navigation and memory. While many studies have investigated the principal neurons within the entorhinal cortex, much less is known about the inhibitory circuitries within this structure. Here, we describe for the first time in the mEC a subset of parvalbumin-positive (PV+) interneurons (INs)-stuttering cells (STUT)-with morphological, intrinsic electrophysiological, and synaptic properties distinct from fast-spiking PV+ INs. In contrast to the fast-spiking PV+ INs, the axon of the STUT INs also terminated in layer 3 and showed subthreshold membrane oscillations at gamma frequencies. Whereas the synaptic output of the STUT INs was only weakly reduced by a μ-opioid agonist, their inhibitory inputs were strongly suppressed. Given these properties, STUT are ideally suited to entrain gamma activity in the pyramidal cell population of the mEC. We propose that activation of the μ-opioid receptors decreases the GABA release from the PV+ INs onto the STUT, resulting in disinhibition of the STUT cell population and the consequent increase in network gamma power. We therefore suggest that the opioid system plays a critical role, mediated by STUT INs, in the neural signaling and oscillatory network activity within the mEC.


Rat Wetness Response: Sensory Cues, Behavior & Fur-based Drying.

  • Augustine Triumph Attah‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

It never rains in standard lab-confinements; thus we have limited understanding of animal reactions to water and wetness. To address this issue, we sprayed water on different body parts of rats and measured drying and fur temperature by thermal imaging while manipulating behavior, sensory cues and fur. Spraying water on rats resulted in fur changes (hair clumping, apex formation), grooming, shaking, and scratching. Anesthesia abolished behavioral responses, interfered with fur changes, and slowed drying. Spraying water on different body parts resulted in differential behavioral drying responses. Spraying the head resulted in grooming and shaking responses; water evaporated twice as fast as water sprayed on the animal's back or belly. We observed no effect of whisker removal on post-water-spraying behavior. In contrast, local anesthesia of dorsal facial skin reduced post-water-spraying behavioral responses. Shaving of head fur drastically enhanced post-water-spraying behaviors, but reduced water loss during drying; indicating that fur promotes evaporation, acting in tandem with behavior to mediate drying. Excised wet fur patches dried and cooled faster than shaved excised wet skin. Water was sucked into distal hair tips, where it evaporated. We propose the wet-fur-heat-pump-hypothesis; fur might extract heat required for drying by cooling ambient air.


Chromosome level genome assembly of the Etruscan shrew Suncus etruscus.

  • Yury V Bukhman‎ et al.
  • Scientific data‎
  • 2024‎

Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.


Burst Firing and Spatial Coding in Subicular Principal Cells.

  • Jean Simonnet‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

The subiculum is the major output structure of the hippocampal formation and is involved in learning and memory as well as in spatial navigation. Little is known about how neuronal diversity contributes to function in the subiculum. Previously, in vitro studies have identified distinct bursting patterns in the subiculum. Here, we asked how burst firing is related to spatial coding in vivo Using juxtacellular recordings in freely moving male rats, we studied the bursting behavior of 102 subicular principal neurons and distinguished two populations: sparsely bursting (∼80%) and dominantly bursting neurons (∼20%). These bursting behaviors were not linked to anatomy: both cell types were found all along the proximodistal and radial axes of the subiculum and all identified cells were pyramidal neurons. However, the distinct burst firing patterns were related to functional differences: the activity of sparsely bursting cells showed a stronger spatial modulation than the activity of dominantly bursting neurons. In addition, all cells classified as boundary cells were sparsely bursting cells. In most sparsely bursting cells, bursts defined sharper firing fields and carried more spatial information than isolated spikes. We conclude that burst firing is functionally relevant to subicular spatially tuned neurons, possibly by serving as a mechanism to transmit spatial information to downstream structures.SIGNIFICANCE STATEMENT The subiculum is the major output structure of the hippocampal formation and is involved in spatial navigation. In vitro, subicular cells can be distinguished by their ability to initiate bursts as brief sequences of spikes fired at high frequencies. Little is known about the relationship between cellular diversity and spatial coding in the subiculum. We performed high-resolution juxtacellular recordings in freely moving rats and found that bursting behavior predicts functional differences between subicular neurons. Specifically, sparsely bursting cells have lower firing rates and carry more spatial information than dominantly bursting cells. Additionally, bursts fired by sparsely bursting cells encoded spatial information better than isolated spikes, indicating that bursts act as a unit of information dedicated to spatial coding.


VGLUT2 Functions as a Differential Marker for Hippocampal Output Neurons.

  • Christian Wozny‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

The subiculum is the gatekeeper between the hippocampus and cortical areas. Yet, the lack of a pyramidal cell-specific marker gene has made the analysis of the subicular area very difficult. Here we report that the vesicular-glutamate transporter 2 (VGLUT2) functions as a specific marker gene for subicular burst-firing neurons, and demonstrate that VGLUT2-Cre mice allow for Channelrhodopsin-2 (ChR2)-assisted connectivity analysis.


Coherent phasic excitation during hippocampal ripples.

  • Nikolaus Maier‎ et al.
  • Neuron‎
  • 2011‎

High-frequency hippocampal network oscillations, or "ripples," are thought to be involved in episodic memory. According to current theories, memory traces are represented by assemblies of principal neurons that are activated during ripple-associated network states. Here we performed in vivo and in vitro experiments to investigate the synaptic mechanisms during ripples. We discovered postsynaptic currents that are phase-locked to ripples and coherent among even distant CA1 pyramidal neurons. These fast currents are consistent with excitatory postsynaptic currents (EPSCs) as they are observed at the equilibrium potential of Cl(-), and they display kinetics characteristic of EPSCs. Furthermore, they survived after intracellular blockade of GABAergic transmission and are effective to regulate the timing of action potentials. In addition, our data show a progressive synchronization of phasic excitation and inhibition during the course of ripples. Together, our results demonstrate the presence of phasic excitation during ripples reflecting an exquisite temporal coordination of assemblies of active pyramidal cells.


Cortical fosGFP expression reveals broad receptive field excitatory neurons targeted by POm.

  • Jean-Sébastien Jouhanneau‎ et al.
  • Neuron‎
  • 2014‎

Neighboring cortical excitatory neurons show considerable heterogeneity in their responses to sensory stimulation. We hypothesized that a subset of layer 2 excitatory neurons in the juvenile (P18 to 27) mouse whisker somatosensory cortex, distinguished by expression of the activity-dependent fosGFP reporter gene, would be preferentially activated by whisker stimulation. In fact, two-photon targeted, dual whole-cell recordings showed that principal whisker stimulation elicits similar amplitude synaptic responses in fosGFP-expressing and fosGFP(-) neurons. FosGFP(+) neurons instead displayed shorter latency and larger amplitude subthreshold responses to surround whisker stimulation. Using optogenetic stimulation, we determined that these neurons are targeted by axons from the posteromedial nucleus (POm), a paralemniscal thalamic nucleus associated with broad receptive fields and widespread cortical projections. We conclude that fosGFP expression discriminates between single- and multi-whisker receptive field layer 2 pyramidal neurons.


Serotonin Attenuates Feedback Excitation onto O-LM Interneurons.

  • Claudia Böhm‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2015‎

The serotonergic system is a subcortical neuromodulatory center that controls cortical information processing in a state-dependent manner. In the hippocampus, serotonin (5-HT) is released by ascending serotonergic fibers from the midbrain raphe nuclei, thereby mediating numerous modulatory functions on various neuronal subtypes. Here, we focus on the neuromodulatory effects of 5-HT on GABAergic inhibitory oriens lacunosum-moleculare (O-LM) cells in the hippocampal area CA1 of the rat. These interneurons are thought to receive primarily local excitatory input and are, via their axonal projections to stratum lacunosum-moleculare, ideally suited to control entorhinal cortex input. We show that 5-HT reduces excitatory glutamatergic transmission onto O-LM interneurons. By means of paired recordings from synaptically connected CA1 pyramidal cells and O-LM interneurons we reveal that this synapse is modulated by 5-HT. Furthermore, we demonstrate that the reduction of glutamatergic transmission by serotonin is likely to be mediated via a decrease of calcium influx into presynaptic terminals of CA1 pyramidal cells. This modulation of excitatory synaptic transmission onto O-LM interneurons by 5-HT might be a mechanism to vary the activation of O-LM interneurons during ongoing network activity and serve as a brain state-dependent switch gating the efficiency of entorhinal cortex input to CA1 pyramidal neurons.


Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.

  • Robert K Naumann‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex.


Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function.

  • Christian Barucker‎ et al.
  • Scientific reports‎
  • 2015‎

The amyloid-β42 (Aβ42) peptide is believed to be the main culprit in the pathogenesis of Alzheimer disease (AD), impairing synaptic function and initiating neuronal degeneration. Soluble Aβ42 oligomers are highly toxic and contribute to progressive neuronal dysfunction, loss of synaptic spine density, and affect long-term potentiation (LTP). We have characterized a short, L-amino acid Aβ-oligomer Interacting Peptide (AIP) that targets a relatively well-defined population of low-n Aβ42 oligomers, rather than simply inhibiting the aggregation of Aβ monomers into oligomers. Our data show that AIP diminishes the loss of Aβ42-induced synaptic spine density and rescues LTP in organotypic hippocampal slice cultures. Notably, the AIP enantiomer (comprised of D-amino acids) attenuated the rough-eye phenotype in a transgenic Aβ42 fly model and significantly improved the function of photoreceptors of these flies in electroretinography tests. Overall, our results indicate that specifically "trapping" low-n oligomers provides a novel strategy for toxic Aβ42-oligomer recognition and removal.


Postnatal Exocrine Pancreas Growth by Cellular Hypertrophy Correlates with a Shorter Lifespan in Mammals.

  • Shira Anzi‎ et al.
  • Developmental cell‎
  • 2018‎

Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects.


Layer 4 barrel cortex neurons retain their response properties during whisker replacement.

  • Eduard Maier‎ et al.
  • Journal of neurophysiology‎
  • 2018‎

Bodies change continuously, but we do not know if and how these changes affect somatosensory cortex. We address this issue in the whisker-barrel-cortex-pathway. We ask how outgrowing whiskers are mapped onto layer 4 barrel neuron responses. Half of whisker follicles contained dual whiskers, a shorter presumably outgrowing whisker (referred to as young whisker) and a longer one (referred to as old whisker). Young whiskers were much thinner than old ones but were inserted more deeply into the whisker follicle. Both whiskers were embedded in one outer root sheath surrounded by a common set of afferent nerve fibers. We juxtacellularly identified layer 4 barrel neurons representing dual whiskers with variable whisker length differences in anesthetized rats. Strength and latency of neuronal responses were strongly correlated for deflections of young and old whiskers but were not correlated with whisker length. The direction preferences of young and old whiskers were more similar than expected by chance. Old whiskers evoked marginally stronger and slightly shorter latency spike and local field potential responses than young whiskers. Our data suggest a conservative rewiring mechanism, which connects young whiskers to existing peripheral sensors. The fact that layer 4 barrel neurons retain their response properties is remarkable given the different length, thickness, and insertion depth of young and old whiskers. Retention of cortical response properties might be related to the placement of young and old whisker in one common outer root sheath and may contribute to perceptual stability across whisker replacement. NEW & NOTEWORTHY A particularly dramatic bodily change is whisker regrowth, which involves the formation of dual whisker follicles. Our results suggest that both whiskers are part of the same mechanoreceptive unit. Despite their distinct whisker length and thickness, responses of single cortical neurons to young and old whisker deflection were similar in strength, latency, and directional tuning. We suggest the congruence of young and old whisker cortical responses contributes to perceptual stability over whisker regrowth.


Physiological and Anatomical Outputs of Rat Genital Cortex.

  • Constanze Lenschow‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2018‎

Rat somatosensory genital cortex contains a large sexually monomorphic representation of the penis in males and the clitoris in females. Genital cortex microstimulation-evoked movements of legs, trunk and genitals, which showed sex-specific differences related to mating behaviors and included thrusting in males and lordosis-like movements in females. Erections/tumescence of penis or clitoris could not be evoked, however. Anterograde tracer injections into penis/clitoris cortex revealed eleven corticocortical and 10 subcortical projection targets, which were qualitatively similar in both sexes. Corticocortical genital-cortex-projections innervated about 3% of the cortical surface and most were analog to other somatosensory projections targeting motor cortex, secondary somatosensory cortex, parietal cortex and perirhinal cortex. Corticocortical projections that differed from other parts of somatosensory cortex targeted male scrotum cortex, female vulva cortex, the somatosensory-ear-auditory-cortex-region and the caudal parietal area. Aligning cytoarchitectonic borders with motor topography, sensory genital responses and corticocortical projections identified a candidate region for genital motor cortex. Most subcortical genital-cortex-projections were analog to other thalamic, tectal or pontine projections of somatosensory cortex. Genital-cortex-specific subcortical projections targeted amygdala and nucleus submedius and accumbens. Microstimulation-effects and projections support a sexual function of genital cortex and suggest that genital cortex is a major hub of sexual sensorimotor processing in rodents.


GluK2-mediated excitability within the superficial layers of the entorhinal cortex.

  • Prateep S Beed‎ et al.
  • PloS one‎
  • 2009‎

Recent analysis of genetically modified mice deficient in different kainate receptor (KAR) subunits have strongly pointed to a role of the GluK2 subunit, mediating the vulnerability of the brain towards seizures. Research concerning this issue has focused mainly on the hippocampus. However, several studies point to a potential role of other parts of the hippocampal formation, in particular the entorhinal cortex, in the development of epileptic seizures. There is extensive cell death after such seizures in layer III of the medial entorhinal cortex (LIII mEC), making this region of special interest for investigation into related pathological conditions. We therefore characterized KAR mediated currents in LIII mEC pyramidal neurons by several different approaches. Using patch-clamp technique, in combination with glutamate uncaging in horizontal brain slices, we show that LIII mEC neurons exhibit KAR currents. Use of genetically modified mice reveal that these currents are mediated by GluK2 containing KARs. The IV curve indicates the predominant presence of a Ca(2+) impermeable and edited form of the KAR. Finally, we show that GluK2 containing kainate receptors are essential for kainate-induced gamma oscillations within the entorhinal cortex.


Synaptic PRG-1 modulates excitatory transmission via lipid phosphate-mediated signaling.

  • Thorsten Trimbuch‎ et al.
  • Cell‎
  • 2009‎

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Natural spike trains trigger short- and long-lasting dynamics at hippocampal mossy fiber synapses in rodents.

  • Anja Gundlfinger‎ et al.
  • PloS one‎
  • 2010‎

Synapses exhibit strikingly different forms of plasticity over a wide range of time scales, from milliseconds to hours. Studies on synaptic plasticity typically use constant-frequency stimulation to activate synapses, whereas in vivo activity of neurons is irregular.


Electrophysiological and Molecular Characterization of the Parasubiculum.

  • Rosanna P Sammons‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2019‎

The parahippocampal region is thought to be critical for memory and spatial navigation. Within this region lies the parasubiculum, a small structure that exhibits strong theta modulation, contains functionally specialized cells, and projects to layer II of the medial entorhinal cortex (MEC). Thus, it is uniquely positioned to influence firing of spatially modulated cells in the MEC and play a key role in the internal representation of the external environment. However, the basic neuronal composition of the parasubiculum remains largely unknown, and its border with the MEC is often ambiguous. We combine electrophysiology and immunohistochemistry in adult mice (both sexes) to define first, the boundaries of the parasubiculum, and second, the major cell types found in this region. We find distinct differences in the colabeling of molecular markers between the parasubiculum and the MEC, allowing us to clearly separate the two structures. Moreover, we find distinct distribution patterns of different molecular markers within the parasubiculum, across both superficial-deep and DV axes. Using unsupervised cluster analysis, we find that neurons in the parasubiculum can be broadly separated into three clusters based on their electrophysiological properties, and that each cluster corresponds to a different molecular marker. We demonstrate that, while the parasubiculum aligns structurally to some to general cortical principals, it also shows divergent features in particular in contrast to the MEC. This work will form an important basis for future studies working to disentangle the circuitry underlying memory and spatial navigation functions of the parasubiculum.SIGNIFICANCE STATEMENT We identify the major neuron types in the parasubiculum using immunohistochemistry and electrophysiology, and determine their distribution throughout the parasubiculum. We find that the neuronal composition of the parasubiculum differs considerably compared with the neighboring medial entorhinal cortex. Both regions are involved in spatial navigation. Thus, our findings are of importance for unraveling the underlying circuitry of this process and for determining the role of the parasubiculum within this network.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: