Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 89 papers

Loss of function of lysosomal acid lipase (LAL) profoundly impacts osteoblastogenesis and increases fracture risk in humans.

  • Ron C Helderman‎ et al.
  • Bone‎
  • 2021‎

Lysosomal acid lipase (LAL) is essential for cholesteryl ester (CE) and triacylglycerol (TAG) hydrolysis in the lysosome. Clinically, an autosomal recessive LIPA mutation causes LAL deficiency (LALD), previously described as Wolman Disease or Cholesteryl Ester Storage Disease (CESD). LAL-D is associated with ectopic lipid accumulation in the liver, small intestine, spleen, adrenal glands, and blood. Considering the importance of unesterified cholesterol and fatty acids in bone metabolism, we hypothesized that LAL is essential for bone formation, and ultimately, skeletal health. To investigate the role of LAL in skeletal homeostasis, we used LAL-deficient (-/-) mice, in vitro osteoblast cultures, and novel clinical data from LAL-D patients. Both male and female LAL-/- mice demonstarted lower trabecular and cortical bone parameters , which translated to reduced biomechanical properties. Further histological analyses revealed that LAL-/- mice had fewer osteoblasts, with no change in osteoclast or marrow adipocyte numbers. In studying the cell-autonomous role of LAL, we observed impaired differentiation of LAL-/- calvarial osteoblasts and in bone marrow stromal cells treated with the LAL inhibitor lalistat. Consistent with LAL's role in other tissues, lalistat resulted in profound lipid puncta accumulation and an altered intracellular lipid profile. Finally, we analyzed a large de-identified national insurance database (i.e. 2016/2017 Optum Clinformatics®) which revealed that adults (≥18 years) with CESD (n = 3076) had a higher odds ratio (OR = 1.21; 95% CI = 1.03-1.41) of all-cause fracture at any location compared to adults without CESD (n = 13.7 M) after adjusting for demographic variables and osteoporosis. These data demonstrate that alterations in LAL have significant clinical implications related to fracture risk and that LAL's modulation of lipid metabolism is a critical for osteoblast function.


The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses.

  • Sarina Schulze‎ et al.
  • Cell host & microbe‎
  • 2022‎

Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.


Metabolic changes and propensity for inflammation, fibrosis, and cancer in livers of mice lacking lysosomal acid lipase.

  • Ivan Bradić‎ et al.
  • Journal of lipid research‎
  • 2023‎

Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.


A dynamic actin cytoskeleton is required to prevent constitutive VDAC-dependent MAPK signalling and aberrant lipid homeostasis.

  • Jack Davis‎ et al.
  • iScience‎
  • 2023‎

The dynamic nature of the actin cytoskeleton is required to coordinate many cellular processes, and a loss of its plasticity has been linked to accelerated cell aging and attenuation of adaptive response mechanisms. Cofilin is an actin-binding protein that controls actin dynamics and has been linked to mitochondrial signaling pathways that control drug resistance and cell death. Here we show that cofilin-driven chronic depolarization of the actin cytoskeleton activates cell wall integrity mitogen-activated protein kinase (MAPK) signalling and disrupts lipid homeostasis in a voltage-dependent anion channel (VDAC)-dependent manner. Expression of the cof1-5 mutation, which reduces the dynamic nature of actin, triggers loss of cell wall integrity, vacuole fragmentation, disruption of lipid homeostasis, lipid droplet (LD) accumulation, and the promotion of cell death. The integrity of the actin cytoskeleton is therefore essential to maintain the fidelity of MAPK signaling, lipid homeostasis, and cell health in S. cerevisiae.


Impact of (intestinal) LAL deficiency on lipid metabolism and macrophage infiltration.

  • Valentina Bianco‎ et al.
  • Molecular metabolism‎
  • 2023‎

To date, the only enzyme known to be responsible for the hydrolysis of cholesteryl esters and triacylglycerols in the lysosome at acidic pH is lysosomal acid lipase (LAL). Lipid malabsorption in the small intestine (SI), accompanied by macrophage infiltration, is one of the most common pathological features of LAL deficiency. However, the exact role of LAL in intestinal lipid metabolism is still unknown.


Loss of lysosomal acid lipase results in mitochondrial dysfunction and fiber switch in skeletal muscles of mice.

  • Alena Akhmetshina‎ et al.
  • Molecular metabolism‎
  • 2024‎

Lysosomal acid lipase (LAL) is the only enzyme known to hydrolyze cholesteryl esters (CE) and triacylglycerols in lysosomes at an acidic pH. Despite the importance of lysosomal hydrolysis in skeletal muscle (SM), research in this area is limited. We hypothesized that LAL may play an important role in SM development, function, and metabolism as a result of lipid and/or carbohydrate metabolism disruptions.


Characterization of rat serum amyloid A4 (SAA4): a novel member of the SAA superfamily.

  • Christine Rossmann‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

The serum amyloid A (SAA) family of proteins is encoded by multiple genes, which display allelic variation and a high degree of homology in mammals. The SAA1/2 genes code for non-glycosylated acute-phase SAA1/2 proteins, that may increase up to 1000-fold during inflammation. The SAA4 gene, well characterized in humans (hSAA4) and mice (mSaa4) codes for a SAA4 protein that is glycosylated only in humans. We here report on a previously uncharacterized SAA4 gene (rSAA4) and its product in Rattus norvegicus, the only mammalian species known not to express acute-phase SAA. The exon/intron organization of rSAA4 is similar to that reported for hSAA4 and mSaa4. By performing 5'- and 3'RACE, we identified a 1830-bases containing rSAA4 mRNA (including a GA-dinucleotide tandem repeat). Highest rSAA4 mRNA expression was detected in rat liver. In McA-RH7777 rat hepatoma cells, rSAA4 transcription was significantly upregulated in response to LPS and IL-6 while IL-1α/β and TNFα were without effect. Luciferase assays with promoter-truncation constructs identified three proximal C/EBP-elements that mediate expression of rSAA4 in McA-RH7777 cells. In line with sequence prediction a 14-kDa non-glycosylated SAA4 protein is abundantly expressed in rat liver. Fluorescence microscopy revealed predominant localization of rSAA4-GFP-tagged fusion protein in the ER.


1-Oleyl-lysophosphatidic acid (LPA) promotes polarization of BV-2 and primary murine microglia towards an M1-like phenotype.

  • Ioanna Plastira‎ et al.
  • Journal of neuroinflammation‎
  • 2016‎

Microglia, the immunocompetent cells of the CNS, rapidly respond to brain injury and disease by altering their morphology and phenotype to adopt an activated state. Microglia can exist broadly between two different states, namely the classical (M1) and the alternative (M2) phenotype. The first is characterized by the production of pro-inflammatory cytokines/chemokines and reactive oxygen and/or nitrogen species. In contrast, alternatively activated microglia are typified by an anti-inflammatory phenotype supporting wound healing and debris clearance. The objective of the present study was to determine the outcome of lysophosphatidic acid (LPA)-mediated signaling events on microglia polarization.


Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice.

  • Nemanja Vujic‎ et al.
  • Atherosclerosis‎
  • 2016‎

Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively. Thus, we speculated that in the absence of MGL, increased 2-AG concentrations mediate CB2R signaling in immune cells to modulate inflammatory responses, thereby affecting the development of atherosclerosis.


A comparative proteome analysis links tyrosine kinase 2 (Tyk2) to the regulation of cellular glucose and lipid metabolism in response to poly(I:C).

  • Tom Grunert‎ et al.
  • Journal of proteomics‎
  • 2011‎

Tyrosine kinase 2 (Tyk2) is an integral part of the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway which relays intracellular signals of various cytokines. Tyk2 crucially contributes to host defense mechanisms against microbial pathogens and to tumor surveillance but also facilitates immune pathologies. Here we investigated the impact of Tyk2 on the macrophage proteome using the synthetic double-stranded RNA analog polyinosinic acid-polycytidylic acid (poly(I:C)) as a mimicry of viral infections. By means of 2D-DIGE in connection with PMF obtained by MALDI-MS and sequence tag determination by MS/MS we unambiguously identified eighteen protein spots corresponding to sixteen distinct proteins that are regulated by poly(I:C) and differentially expressed between wildtype (WT) and Tyk2-deficient macrophages. The majority of these proteins are functionally assigned to cellular immune responses and to metabolism. We show for selected metabolic enzymes, i.e. triosephosphate isomerase (TIM), ATP-citrate synthase (ACLY) and long-chain-fatty-acid-CoA ligase 4 (ACSL4), that Tyk2 affects protein expression transcriptionally and post-transcriptionally. We furthermore confirm the involvement of Tyk2 in the regulation of lipid and carbohydrate metabolism at the level of metabolites. Taken together, our results provide new evidence for important functions of Tyk2 at the molecular interface between innate immunity and cellular metabolism.


The PPARα agonist fenofibrate suppresses B-cell lymphoma in mice by modulating lipid metabolism.

  • Jianfeng Huang‎ et al.
  • Biochimica et biophysica acta‎
  • 2013‎

Obesity is associated with an increased risk for malignant lymphoma development. We used Bcr/Abl transformed B cells to determine the impact of aggressive lymphoma formation on systemic lipid mobilization and turnover. In wild-type mice, tumor size significantly correlated with depletion of white adipose tissues (WAT), resulting in increased serum free fatty acid (FFA) concentrations which promote B-cell proliferation in vitro. Moreover, B-cell tumor development induced hepatic lipid accumulation due to enhanced hepatic fatty acid (FA) uptake and impaired FA oxidation. Serum triglyceride, FFA, phospholipid and cholesterol levels were significantly elevated. Consistently, serum VLDL/LDL-cholesterol and apolipoprotein B levels were drastically increased. These findings suggest that B-cell tumors trigger systemic lipid mobilization from WAT to the liver and increase VLDL/LDL release from the liver to promote tumor growth. Further support for this concept stems from experiments where we used the peroxisome proliferator-activated receptor α (PPARα) agonist and lipid-lowering drug fenofibrate that significantly suppressed tumor growth independent of angiogenesis and inflammation. In addition to WAT depletion, fenofibrate further stimulated FFA uptake by the liver and restored hepatic FA oxidation capacity, thereby accelerating the clearance of lipids released from WAT. Furthermore, fenofibrate blocked hepatic lipid release induced by the tumors. In contrast, lipid utilization in the tumor tissue itself was not increased by fenofibrate which correlates with extremely low expression levels of PPARα in B-cells. Our data show that fenofibrate associated effects on hepatic lipid metabolism and deprivation of serum lipids are capable to suppress B-cell lymphoma growth which may direct novel treatment strategies. This article is part of a Special Issue entitled Lipid Metabolism in Cancer.


Endothelial lipase increases eNOS activating capacity of high-density lipoprotein.

  • Snježana Radulović‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2020‎

Endothelial lipase (EL) changes structural and functional properties of high-density lipoprotein (HDL). HDL is a relevant modulator of endothelial nitric oxide synthase (eNOS) activity, but the effect of EL on HDL induced eNOS-activation has not yet been investigated. Here, we examined the impact of EL-modified HDL (EL-HDL) on eNOS activity, subcellular trafficking, and eNOS- dependent vasorelaxation. EL-HDL and empty virus (EV)-HDL as control were isolated from human serum incubated with EL-overexpressing or EV infected HepG2 cells. EL-HDL exhibited higher capacity to induce eNOS phosphorylation at Ser1177 and eNOS activity in EA.hy 926 cells, as well as eNOS-dependent vasorelaxation of mouse aortic rings compared to control HDL. As revealed by confocal and structured illumination-microscopy EL-HDL-driven induction of eNOS was accompanied by an increased eNOS-GFP targeting to the plasma membrane and a lower eNOS-GFP colocalization with Golgi and mitochondria. Widefield microscopy of filipin stained cells revealed that EL-HDL lowered cellular free cholesterol (FC) and as found by thin-layer chromatography increased cellular cholesterol ester (CE) content. Additionally, cholesterol efflux capacity, acyl-coenzyme A: cholesterol acyltransferase activity, and HDL particle uptake were comparable between EL-HDL and control HDL. In conclusion, EL increases eNOS activating capacity of HDL, a phenomenon accompanied by an enrichment of the plasma membrane eNOS pool, a decreased cell membrane FC and increased cellular CE content.


A novel human ex vivo skin model to study early local responses to burn injuries.

  • Elisabeth Hofmann‎ et al.
  • Scientific reports‎
  • 2021‎

Burn injuries initiate numerous processes such as heat shock response, inflammation and tissue regeneration. Reliable burn models are needed to elucidate the exact sequence of local events to be able to better predict when local inflammation triggers systemic inflammatory processes. In contrast to other ex vivo skin culture approaches, we used fresh abdominal skin explants to introduce contact burn injuries. Histological and ultrastructural analyses confirmed a partial-thickness burn pathology. Gene expression patterns and cytokine production profiles of key mediators of the local inflammation, heat shock response, and tissue regeneration were analyzed for 24 h after burn injury. We found significantly increased expression of factors involved in tissue regeneration and inflammation soon after burn injury. To investigate purely inflammation-mediated reactions we injected lipopolysaccharide into the dermis. In comparison to burn injury, lipopolysaccharide injection initiated an inflammatory response while expression patterns of heat shock and tissue regeneration genes were unaffected for the duration of the experiment. This novel ex vivo human skin model is suitable to study the local, early responses to skin injuries such as burns while maintaining an intact overall tissue structure and it gives valuable insights into local mechanisms at the very beginning of the wound healing process after burn injuries.


Metabolomic Profiles of Mouse Tissues Reveal an Interplay between Aging and Energy Metabolism.

  • Qishun Zhou‎ et al.
  • Metabolites‎
  • 2021‎

Energy metabolism, including alterations in energy intake and expenditure, is closely related to aging and longevity. Metabolomics studies have recently unraveled changes in metabolite composition in plasma and tissues during aging and have provided critical information to elucidate the molecular basis of the aging process. However, the metabolic changes in tissues responsible for food intake and lipid storage have remained unexplored. In this study, we aimed to investigate aging-related metabolic alterations in these tissues. To fill this gap, we employed NMR-based metabolomics in several tissues, including different parts of the intestine (duodenum, jejunum, ileum) and brown/white adipose tissues (BAT, WAT), of young (9-10 weeks) and old (96-104 weeks) wild-type (mixed genetic background of 129/J and C57BL/6) mice. We, further, included plasma and skeletal muscle of the same mice to verify previous results. Strikingly, we found that duodenum, jejunum, ileum, and WAT do not metabolically age. In contrast, plasma, skeletal muscle, and BAT show a strong metabolic aging phenotype. Overall, we provide first insights into the metabolic changes of tissues essential for nutrient uptake and lipid storage and have identified biomarkers for metabolites that could be further explored, to study the molecular mechanisms of aging.


A joint alignment and reconstruction algorithm for electron tomography to visualize in-depth cell-to-cell interactions.

  • Lea Bogensperger‎ et al.
  • Histochemistry and cell biology‎
  • 2022‎

Electron tomography allows one to obtain 3D reconstructions visualizing a tissue's ultrastructure from a series of 2D projection images. An inherent problem with this imaging technique is that its projection images contain unwanted shifts, which must be corrected for to achieve reliable reconstructions. Commonly, the projection images are aligned with each other by means of fiducial markers prior to the reconstruction procedure. In this work, we propose a joint alignment and reconstruction algorithm that iteratively solves for both the unknown reconstruction and the unintentional shift and does not require any fiducial markers. We evaluate the approach first on synthetic phantom data where the focus is not only on the reconstruction quality but more importantly on the shift correction. Subsequently, we apply the algorithm to healthy C57BL/6J mice and then compare it with non-obese diabetic (NOD) mice, with the aim of visualizing the attack of immune cells on pancreatic beta cells within type 1 diabetic mice at a more profound level through 3D analysis. We empirically demonstrate that the proposed algorithm is able to compute the shift with a remaining error at only the sub-pixel level and yields high-quality reconstructions for the limited-angle inverse problem. By decreasing labour and material costs, the algorithm facilitates further research directed towards investigating the immune system's attacks in pancreata of NOD mice for numerous samples at different stages of type 1 diabetes.


Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice.

  • Chaitanya Chakravarthi Gali‎ et al.
  • Molecular and cellular neurosciences‎
  • 2019‎

Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aβ clearance from the brain. Changes in IR-β and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-β levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-β levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-β and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aβ burden without affecting cerebrovascular LRP-1 and IR-β levels. In vitro studies using primary porcine (p)BCEC revealed that Aβ peptides 1-40 or 1-42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-β thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aβ treatment accelerated the autophagy-lysosomal degradation of IR-β and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-β levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aβ burden in AD may accelerate LRP-1 and IR-β degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.


Enterocyte-specific ATGL overexpression affects intestinal and systemic cholesterol homeostasis.

  • Melanie Korbelius‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2022‎

Enterocytes of the small intestine (SI) play an important role in maintaining systemic lipid levels by regulating dietary lipid absorption and postprandial lipoprotein secretion. An excessive amount of dietary-derived triglycerides (TGs) taken up by the apical side of enterocytes or basolaterally internalized lipoprotein remnants can be transiently stored in cytosolic lipid droplets (cLDs). As mice lacking adipose TG lipase (ATGL) in the SI display massive accumulation of cLDs but also delayed cholesterol absorption, we hypothesized that SI-specific overexpression of ATGL (Atgl iTg) might have beneficial effects on lipid homeostasis in the gut and possibly throughout the body. Here, we demonstrate that Atgl iTg mice had only modestly increased enzymatic activity despite drastically elevated Atgl mRNA levels (up to 120-fold) on chow diet, and was highly induced upon high-fat/high-cholesterol diet (HF/HCD) feeding. Atgl iTg mice showed markedly reduced intestinal TG concentrations after acute and chronic lipid challenge without affecting chylomicron TG secretion. Circulating plasma cholesterol levels were significantly lower in Atgl iTg mice under different feeding conditions, contrasting the accelerated uptake of dietary cholesterol into the circulation after HF/HCD feeding. In the fasted state, gene expression analysis revealed modulation of PPARα and liver X receptor (LXR) target genes by an increased fatty acid release, whereas the decreased plasma cholesterol concentrations in refed mice were more likely due to changes in HDL synthesis and secretion. We conclude that ATGL, in addition to its role in TG catabolism, plays a critical role in whole-body cholesterol homeostasis by modulating PPARα and LXR signaling in intestinal enterocytes.


Off-target effects of the lysosomal acid lipase inhibitors Lalistat-1 and Lalistat-2 on neutral lipid hydrolases.

  • Ivan Bradić‎ et al.
  • Molecular metabolism‎
  • 2022‎

Lysosomal acid lipase (LAL) is the key enzyme, which degrades neutral lipids at an acidic pH in lysosomes. The role of LAL in various cellular processes has mostly been studied in LAL-knockout mice, which share phenotypical characteristics with humans suffering from LAL deficiency. In vitro, the cell-specific functions of LAL have been commonly investigated by using the LAL inhibitors Lalistat-1 and Lalistat-2.


The effect of spermidine on autoimmunity and beta cell function in NOD mice.

  • Ceren Karacay‎ et al.
  • Scientific reports‎
  • 2022‎

Spermidine is a natural polyamine which was shown to prolong lifespan of organisms and to improve cardiac and cognitive function. Spermidine was also reported to reduce inflammation and modulate T-cells. Autophagy is one of the mechanisms that spermidine exerts its effect. Autophagy is vital for β-cell homeostasis and autophagy deficiency was reported to lead to exacerbated diabetes in mice. The effect of spermidine in type 1 diabetes pathogenesis remains to be elucidated. Therefore, we examined the effect of spermidine treatment in non-obese diabetic (NOD) mice, a mouse model for type 1 diabetes. NOD mice were given untreated or spermidine-treated water ad libitum from 4 weeks of age until diabetes onset or 35 weeks of age. We found that treatment with 10 mM spermidine led to higher diabetes incidence in NOD mice despite unchanged pancreatic insulitis. Spermidine modulated tissue polyamine levels and elevated signs of autophagy in pancreas. Spermidine led to increased proportion of pro-inflammatory T-cells in pancreatic lymph nodes (pLN) in diabetic mice. Spermidine elevated the proportion of regulatory T-cells in early onset mice, whereas it reduced the proportion of regulatory T-cells in late onset mice. In summary spermidine treatment led to higher diabetes incidence and elevated proportion of T-cells in pLN.


Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice.

  • Melina Amor‎ et al.
  • Cardiovascular diabetology‎
  • 2023‎

Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: