Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 1,114 papers

Discovery of KIRREL as a biomarker for prognostic stratification of patients with thin melanoma.

  • Sebastian Lundgren‎ et al.
  • Biomarker research‎
  • 2019‎

There is a great unmet clinical need to identify patients with thin primary cutaneous melanomas (T1, Breslow thickness ≤ 1 mm) who have a high risk for tumour recurrence and death from melanoma. Kin of IRRE-like protein 1 (KIRREL/NEPH1) is expressed in podocytes and involved in glomerular filtration. Screening in the Human Protein Atlas portal revealed a particularly high expression of KIRREL in melanoma, both at the mRNA and protein levels. In this study, we followed up on these findings and examined the prognostic value of KIRREL in a population-based cohort. Immunohistochemical expression of KIRREL was examined in tissue microarrays with a subset of primary tumours and paired lymph node metastases from an original cohort of 268 incident cases of melanoma in the Malmö Diet and Cancer study. KIRREL mRNA expression was examined in 103 melanoma cases in The Cancer Genome Atlas (TCGA). Membranous/cytoplasmic expression of KIRREL was detected in 158/185 (85.4%) primary tumours and 18/19 (94.7%) metastases. High expression of KIRREL was significantly associated with several unfavourable clinicopathological factors. High KIRREL protein expression was an independent factor of reduced recurrence free and melanoma specific survival, particularly in thin melanomas, even outperforming absolute thickness and ulceration (HR = 30.85; 95% CI 1.54-616.36 and HR = 6.32 95% CI 1.19-33.65). High mRNA levels of KIRREL were not significantly associated with survival in TCGA. In conclusion, KIRREL is not only a novel potential diagnostic marker for melanoma, but may also be a useful prognostic biomarker for improved stratification of patients with thin melanoma. These findings may be of high clinical relevance and therefore merit further validation.


Transcriptome analysis identifies strong candidate genes for ginsenoside biosynthesis and reveals its underlying molecular mechanism in Panax ginseng C.A. Meyer.

  • Mingzhu Zhao‎ et al.
  • Scientific reports‎
  • 2019‎

Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal herbs for human health and medicine in which ginsenosides are known to play critical roles. The genes from the cytochrome P450 (CYP) gene superfamily have been shown to play important roles in ginsenoside biosynthesis. Here we report genome-wide identification of the candidate PgCYP genes for ginsenoside biosynthesis, development of functional SNP markers for its manipulation and systems analysis of its underlying molecular mechanism. Correlation analysis identified 100 PgCYP genes, including all three published ginsenoside biosynthesis PgCYP genes, whose expressions were significantly correlated with the ginsenoside contents. Mutation association analysis identified that six of these 100 PgCYP genes contained SNPs/InDels that were significantly associated with ginsenosides biosynthesis (P ≤ 1.0e-04). These six PgCYP genes, along with all ten published ginsenoside biosynthesis genes from the PgCYP and other gene families, formed a strong co-expression network, even though they varied greatly in spatio-temporal expressions. Therefore, this study has identified six new ginsenoside biosynthesis candidate genes, provided a genome-wide insight into how they are involved in ginsenoside biosynthesis and developed a set of functional SNP markers useful for enhanced ginsenoside biosynthesis research and breeding in ginseng and related species.


Multifaceted Role of PheDof12-1 in the Regulation of Flowering Time and Abiotic Stress Responses in Moso Bamboo (Phyllostachys edulis).

  • Jun Liu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA₃) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.


Circulating serum vitamin D levels and total body bone mineral density: A Mendelian randomization study.

  • Jing-Yi Sun‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Until recently, randomized controlled trials have not demonstrated convincing evidence that vitamin D, or vitamin D in combination with calcium supplementation could improve bone mineral density (BMD), osteoporosis and fracture. It remains unclear whether vitamin D levels are causally associated with total body BMD. Here, we performed a Mendelian randomization study to investigate the association of vitamin D levels with total body BMD using a large-scale vitamin D genome-wide association study (GWAS) dataset (including 79 366 individuals) and a large-scale total body BMD GWAS dataset (including 66,628 individuals). We selected three Mendelian randomization methods including inverse-variance weighted meta-analysis (IVW), weighted median regression and MR-Egger regression. All these three methods did not show statistically significant association of genetically increased vitamin D levels with total body BMD. Importantly, our findings are consistent with recent randomized clinical trials and Mendelian randomization study. In summary, we provide genetic evidence that increased vitamin D levels could not improve BMD in the general population. Hence, vitamin D supplementation alone may not be associated with reduced fracture incidence among community-dwelling adults without known vitamin D deficiency, osteoporosis, or prior fracture.


Novel long non-coding RNA LINC02532 promotes gastric cancer cell proliferation, migration, and invasion in vitro.

  • Cheng Zhang‎ et al.
  • World journal of gastrointestinal oncology‎
  • 2019‎

Long non-coding RNAs (lncRNAs) are a kind of single-stranded RNA of more than 200 nucleotides in length and have no protein-coding function. Amounting studies have indicated that lncRNAs could play a vital role in the initiation and development of cancers, including gastric cancer (GC). Considering the crucial functions of lncRNAs, the identification and exploration of novel lncRNAs in GC is necessary.


The Complete Plastid Genome of Magnolia zenii and Genetic Comparison to Magnoliaceae species.

  • Yongfu Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.


TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.

  • Fang Hua‎ et al.
  • Gastroenterology‎
  • 2019‎

Activation of Wnt signaling to β-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway.


Pooling-analysis on hMLH1 polymorphisms and cancer risk: evidence based on 31,484 cancer cases and 45,494 cancer-free controls.

  • Sha Li‎ et al.
  • Oncotarget‎
  • 2017‎

To elucidate the veritable relationship between three hMLH1 polymorphisms (rs1800734, rs1799977, rs63750447) and cancer risk, we performed this meta-analysis based on overall published data up to May 2017, from PubMed, Web of knowledge, VIP, WanFang and CNKI database, and the references of the original studies or review articles. 57 publications including 31,484 cancer cases and 45,494 cancer-free controls were obtained. The quality assessment of six articles obtained a summarized score less than 6 in terms of the Newcastle-Ottawa Scale (NOS). All statistical analyses were calculated with the software STATA (Version 14.0; Stata Corp, College Station, TX). We found all the three polymorphisms can enhance overall cancer risk, especially in Asians, under different genetic comparisons. In the subgroup analysis by cancer type, we found a moderate association between rs1800734 and the risk of gastric cancer (allele model: OR = 1.14, P = 0.017; homozygote model: OR = 1.33, P = 0.019; dominant model: OR = 1.27, P = 0.024) and lung cancer in recessive model (OR = 1.27, P = 0.024). The G allele of rs1799977 polymorphism was proved to connect with susceptibility of colorectal cancer (allele model: OR = 1.21, P = 0.023; dominate model: OR = 1.32, P <0.0001) and prostate cancer (dominate model: OR = 1.36, P <0.0001). Rs63750447 showed an increased risk of colorectal cancer, endometrial cancer and gastric cancer under all genetic models. These findings provide evidence that hMLH1 polymorphisms may associate with cancer risk, especially in Asians.


CCAAT/enhancer-binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin-converting enzyme-2 expression in diabetes.

  • Yuanyuan Tie‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer-binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin-converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh-C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti-fibrosis, anti-apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down-regulated in diabetic mice and HG-induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up-regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up-regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.


Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD.

  • Adil Mardinoglu‎ et al.
  • Molecular systems biology‎
  • 2017‎

To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.


DNA methyltransferase 1 rs16999593 genetic polymorphism decreases risk in patients with transposition of great arteries.

  • Liming Lei‎ et al.
  • Gene‎
  • 2017‎

Complete transposition of the great arteries (TGA) is the most frequent cyanotic heart defect diagnosed in neonates. However, the exact etiology of TGA is unknown. The aim of the present study was to assess the association of TGA pathogenesis with single nucleotide polymorphisms (SNPs) in DNA methyltransferases (DNMTs)-1 and 3a- in Chinese children. We genotyped 5 SNPs (rs16999593, rs16999358, and rs2228611 in DNMT1; and rs2276599 and rs2276598 in DNMT3A) in 206 patients with complete TGA and 252 healthy children. Statistical analysis was performed to explore the association of the 5 SNPs with complete TGA susceptibility. Compared with the T/T and C/C genotypes, the heterozygous genotype C/T of rs16999593 correlated with a decreased risk for complete TGA under codominant (OR=0.46; 95% CI=0.29-0.72), dominant (OR=0.58; 95% CI=0.38-0.88), and overdominant (OR=0.44; 95% CI=0.28-0.68) models. In contrast, the genotype C/C of rs16999593 correlated with a higher risk for TGA under a recessive model (OR=3.15; 95% CI=1.14-8.68) compared with the T/T and C/T genotypes. Furthermore, the TGC, TGT, CGC, and CGT haplotypes of DNMT1 did not differ significantly between the two groups, whereas the frequency of the TAC haplotype was lower in the case group (OR<1; P=0.002). No significant differences in the frequencies of the TC, CC, TT, and CT haplotypes of DNMT3A were found between the two groups. Furthermore, logistic regression showed that sex and the rs16999358 SNP were two independent risk factors for complete TGA. Overall, the C/T genotype of the rs16999593 SNP in DNMT1 might decrease the risk of complete TGA pathogenesis in the Southern Chinese population.


Nitric Oxide-Mediated Regulation of GLUT by T3 and Follicle-Stimulating Hormone in Rat Granulosa Cells.

  • Ye Tian‎ et al.
  • Endocrinology‎
  • 2017‎

Thyroid hormones are important for normal reproductive function. Although 3,5,3'-triiodothyronine (T3) enhances follicle-stimulating hormone (FSH)-induced preantral follicle growth and granulosa cells development in vitro, little is known about the molecular mechanisms regulating ovarian development via glucose. In this study, we investigated whether and how T3 combines with FSH to regulate glucose transporter protein (GLUT) expression and glucose uptake in granulosa cells. In this study, we present evidence that T3 and FSH cotreatment significantly increased GLUT-1/GLUT-4 expression, and translocation in cells, as well as glucose uptake. These changes were accompanied by upregulation of nitric oxide (NO) synthase (NOS)3 expression, total NOS and NOS3 activity, and NO content in granulosa cells. Furthermore, we found that activation of the mammalian target of rapamycin (mTOR) and phosphoinositide 3-kinase (PI3K)/Akt pathway is required for the regulation of GLUT expression, translocation, and glucose uptake by hormones. We also found that l-arginine upregulated GLUT-1/GLUT-4 expression and translocation, which were related to increased glucose uptake; however, these responses were significantly blocked by N(G)-nitro-l-arginine methylester. In addition, inhibiting NO production attenuated T3- and FSH-induced GLUT expression, translocation, and glucose uptake in granulosa cells. Our data demonstrate that T3 and FSH cotreatment potentiates cellular glucose uptake via GLUT upregulation and translocation, which are mediated through the activation of the mTOR/PI3K/Akt pathway. Meanwhile, NOS3/NO are also involved in this regulatory system. These findings suggest that GLUT is a mediator of T3- and FSH-induced follicular development.


Three-microRNA signature identified by bioinformatics analysis predicts prognosis of gastric cancer patients.

  • Cheng Zhang‎ et al.
  • World journal of gastroenterology‎
  • 2018‎

To identify multiple microRNAs (miRNAs) for predicting the prognosis of gastric cancer (GC) patients by bioinformatics analysis.


Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist.

  • Patrizia M Spoerri‎ et al.
  • Structure (London, England : 1993)‎
  • 2018‎

The protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) involved in hemostasis, thrombosis, and inflammation, is activated by thrombin or other coagulation proteases. This activation is inhibited by the irreversible antagonist vorapaxar used for anti-platelet therapy. Despite detailed structural and functional information, how vorapaxar binding alters the structural properties of PAR1 to prevent activation is hardly known. Here we apply dynamic single-molecule force spectroscopy to characterize how vorapaxar binding changes the mechanical, kinetic, and energetic properties of human PAR1 under physiologically relevant conditions. We detect structural segments stabilizing PAR1 and quantify their properties in the unliganded and the vorapaxar-bound state. In the presence of vorapaxar, most structural segments increase conformational variability, lifetime, and free energy, and reduce mechanical rigidity. These changes highlight a general trend in how GPCRs are affected by strong antagonists.


Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role.

  • Shao-Ming Shen‎ et al.
  • Nature communications‎
  • 2018‎

Dysregulation of pre-mRNA alternative splicing (AS) is closely associated with cancers. However, the relationships between the AS and classic oncogenes/tumor suppressors are largely unknown. Here we show that the deletion of tumor suppressor PTEN alters pre-mRNA splicing in a phosphatase-independent manner, and identify 262 PTEN-regulated AS events in 293T cells by RNA sequencing, which are associated with significant worse outcome of cancer patients. Based on these findings, we report that nuclear PTEN interacts with the splicing machinery, spliceosome, to regulate its assembly and pre-mRNA splicing. We also identify a new exon 2b in GOLGA2 transcript and the exon exclusion contributes to PTEN knockdown-induced tumorigenesis by promoting dramatic Golgi extension and secretion, and PTEN depletion significantly sensitizes cancer cells to secretion inhibitors brefeldin A and golgicide A. Our results suggest that Golgi secretion inhibitors alone or in combination with PI3K/Akt kinase inhibitors may be therapeutically useful for PTEN-deficient cancers.


Tapetal-Delayed Programmed Cell Death (PCD) and Oxidative Stress-Induced Male Sterility of Aegilops uniaristata Cytoplasm in Wheat.

  • Zihan Liu‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Cytoplasmic male sterility (CMS) plays a crucial role in the utilization of hybrid vigor. Pollen development is often accompanied by oxidative metabolism responses and tapetal programmed cell death (PCD), and deficiency in these processes could lead to male sterility. Aegilops uniaristata cytoplasmic male sterility (Mu-CMS) wheat is a novel male-sterile line in wheat, which possess important potential in hybrid wheat breeding. However, its CMS mechanisms remain poorly understood. In our study, U87B1-706A, with the Aegilops uniaristata cytoplasm, and the maintainer line 706B were used to explore the abortive reason. Compared with 706B, histological analysis and PCD detection of the anther demonstrated that U87B1-706A appeared as delayed tapetal PCD as well as a disorganized organelle phenotype in the early uninucleate stage. Subsequently, a shrunken microspore and disordered exine structure were exhibited in the late uninucleate stage. While the activities of antioxidase increased markedly, the nonenzymatic antioxidant contents declined obviously following overacummulation of reactive oxygen species (ROS) during pollen development in U87B1-706A. Real-time quantitative PCR testified that the transcript levels of the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) genes, encoding pivotal antioxidant enzymes, were up-regulated in early pollen development. Therefore, we deduce excess ROS as a signal may be related to the increased expression levels of enzyme genes, thereby breaking the antioxidative system balance, resulting in delayed tapetal PCD initiation, which finally led to pollen abortion and male sterility in U87B1-706A. These results provide evidence to further explore the mechanisms of abortive pollen in CMS wheat.


GSP-2, a polysaccharide extracted from Ganoderma sinense, is a novel toll-like receptor 4 agonist.

  • Kai-Sheng Liu‎ et al.
  • PloS one‎
  • 2019‎

Ganoderma sinense is a Chinese unique medicinal fungus that has been used in folk medicine for thousands of years. Polysaccharides are considered to be biologically active ingredients due to their immune-modulating functions. Previously we found that GSP-2, a new polysaccharide isolated from Ganoderma sinense, exerts an immunomodulatory effect in human peripheral blood mononuclear cells but the underlying mechanism is unclear. The present study aimed to investigate how GSP-2 triggers immunologic responses and the implicated signaling pathways. GSP-2 effects were investigated both in a macrophagic cell line, RAW264.7, and in primary macrophages. Moreover, the molecular basis of GSP-2 recognition by immune cells, and the consequent activation of signaling cascades, were explored by employing recombinant human HEK293-TLR-Blue clones, individually overexpressing various Toll-like receptors. GSP-2 dose-dependently induced the overexpression of Toll-like receptor 4 (TLR4) but did not affect the expression of other TLRs. Moreover, GSP-2 induced TNFα secretion in primary macrophages from wild-type, but not TLR4-knockout mice. In addition, GSP-2 upregulated TLR4 protein expression and activated the MAPK pathway in RAW246.7 macrophages. Finally, GSP-2 induced the production of the cytokines TNFα, IL1β, and IL6. Our data demonstrated that GSP-2 was specifically recognized by TLR4, promoting cytokine secretion and immune modulation in macrophages.


Combination of Gentiana rhodantha and Gerbera anandria in the BL02 formula as therapeutics to non-small cell lung carcinoma acting via Rap1/cdc42 signaling: A transcriptomics/ bio-informatics biological validation approach.

  • Hor-Yue Tan‎ et al.
  • Pharmacological research‎
  • 2020‎

Non-small cell lung cancer (NSCLC) ranks the most commonly diagnosed and highest mortality-leading cancer worldwide despite a variety of treatment strategies are available. The highly heterogeneous and aggressive property of NSCLC as well as its poor prognosis indicates the need for novel therapeutic targets identification. The objective of this study is to identify potential targets from the adjuvant herbal formula BL02 using a combined approach of high throughput transcriptomics and network pharmacology.


Analysis of metabolic pathways related to fertility restoration and identification of fertility candidate genes associated with Aegilops kotschyi cytoplasm in wheat (Triticum aestivum L.).

  • Sha Li‎ et al.
  • BMC plant biology‎
  • 2019‎

Thermo-sensitive male-sterility based on Aegilops kotschyi cytoplasm (K-TCMS) plays an important role in hybrid wheat breeding. This has important possible applications in two-line hybrid wheat breeding but the genetic basis and molecular regulation mechanism related to fertility restoration are poorly understood. In this study, comparative transcriptome profiling based on RNA sequencing was conducted for two near-isogenic lines comprising KTM3315R and its sterile counterpart KTM3315A, a total of six samples (3 repetitions per group), in order to identify fertility restoration genes and their metabolic pathways.


Smooth muscle-specific Gsα deletion exaggerates angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo.

  • Xiaoteng Qin‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without an effective pharmaceutical treatment. Genetic studies have proved the involvement of smooth muscle phenotype switch in the development of AAA. The alpha subunit of the heterotrimeric G stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of smooth muscle Gsα in AAA formation remains unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: