Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 1,281 papers

Identifying differentially expressed genes from cross-site integrated data based on relative expression orderings.

  • Hao Cai‎ et al.
  • International journal of biological sciences‎
  • 2018‎

It is a basic task in high-throughput gene expression profiling studies to identify differentially expressed genes (DEGs) between two phenotypes. But the weakly differential expression signals between two phenotypes are hardly detectable with limited sample sizes. To solve this problem, many researchers tried to combine multiple independent datasets using meta-analysis or batch effect adjustment algorithms. However, these algorithms may distort true biological differences between two phenotypes and introduce unacceptable high false rates, as demonstrated in this study. These problems pose critical obstacles for analyzing the transcriptional data in The Cancer Genome Atlas where there are many small-scale batches of data. Previously, we developed RankComp to detect DEGs for individual disease samples through exploiting the incongruous relative expression orderings between two phenotypes and further improved it here to identify DEGs using multiple independent datasets. We demonstrated the improved RankComp can directly analyze integrated cross-site data to detect DEGs between two phenotypes without the need of batch effect adjustments. Its usage was illustrated in detecting weak differential expression signals of breast cancer drug-response data using combined datasets from multiple experiments.


Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d.

  • Cheng Zhang‎ et al.
  • Cell‎
  • 2018‎

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.4 and 3.3 Å resolution, respectively. Furthermore, a 6.5 Å reconstruction of apo Cas13d combined with hydrogen-deuterium exchange revealed conformational dynamics that have implications for RNA scanning. These structures, together with biochemical and cellular characterization, provide insights into its RNA-guided, RNA-targeting mechanism and delineate a blueprint for the rational design of improved transcriptome engineering technologies.


The downregulated long noncoding RNA DHRS4-AS1 is protumoral and associated with the prognosis of clear cell renal cell carcinoma.

  • Changlin Wang‎ et al.
  • OncoTargets and therapy‎
  • 2018‎

Long noncoding RNAs (lncRNAs) have been identified as important factors in cancer biology and are deregulated in many cancers. The present study aimed to determine the expression and roles of lncRNA DHRS4-AS1 in the progression of clear cell renal cell carcinoma (ccRCC).


The effect of Hsa_circ_0001451 in clear cell renal cell carcinoma cells and its relationship with clinicopathological features.

  • Gang Wang‎ et al.
  • Journal of Cancer‎
  • 2018‎

Purpose: Circular RNAs (circRNAs), are a large class of RNAs that from a covalently closed continuous loop and have recently showed huge capabilities as gene regulators in mammals. Although Hsa_circ_0001451 has been investigated in colorectal cancer, it remains unclear about the relationship between Hsa_circ_0001451 and clear cell renal cell carcinoma (ccRCC). Our research aims to reveal the function of Hsa_circ_0001451 in the proliferation and development in ccRCC cells. Methods: The expression of Hsa_circ_0001451 in 52 pairs of ccRCC tissues and paraneoplastic tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The correlation between Hsa_circ_0001451 and the clinicopathological features was evaluated using the chi-sequare test. Receiver operating characteristic (ROC) curve was built by SPSS to evaluate the diagnostic values. The effects of Hsa_circ_0001451 on ccRCC cells were determined via a MTT assay, clone formation assay, flow cytometry and Western blot analysis. Results: The expression of Hsa_circ_0001451 was significantly correlated with differentiation (P<0.05). The area under ROC curve of Hsa_circ_0001451 was 0.704 (P<0.05). Knockdown of Hsa_circ_0001451 significantly promoted tumor growth in vitro. Bioinformatics results also displayed that Hsa_circ_0001451 might be involved in the regulation of tumor progression. Conclusion: Taken together, our finding showed that Hsa_circ_0001451 might become a novel potential biomarker in the diagnosis of ccRCC and a potential novel target for the treatment of ccRCC.


Smart mitochondrial-targeted cancer therapy: Subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity.

  • Xia Du‎ et al.
  • International journal of pharmaceutics‎
  • 2019‎

Targeting mitochondrial redox homeostasis is an appealing methodology for cancer therapeutics because of the upregulated antioxidant capacity in drug resistance cases. By coupling triphenylamine (TPA) with an excellent fluorescent group BODIPY, a novel mitochondrial-targeted fluorescent probe, BODIPY-TPA (BTPA), was synthesized and characterized. Confocal microscopic colocalization imaging indicated that BTPA exhibited a subcellular mitochondrial distribution. Cytotoxicity experiments suggested that BTPA exhibited selective anticancer activity via the induction of mitochondrial dysfunction in BGC-823 cancer cells. BTPA induced alterations in mitochondrial redox homeostasis because of the electron-donating property of TPA and mitochondrial selectivity. In further studies, TrxR2 in the mitochondria was alternatively inhibited, which contributed to MtROS accumulation further attenuated PI3K/Akt signaling pathway. The resultant decline in mitochondrial antioxidant capacity aggravated mitochondrial oxidative stress, which is responsible for cytochrome C release and caspase-9 activation. NAC completely reversed BTPA-induced ROS-dependent mitochondrial-mediated intrinsic apoptosis. Therefore, BTPA was designed as a superior fluorescent cancer-imaging probe and a mitochondrial redox-targeting anticancer agent.


Design, Synthesis, and Biological Activity of Novel Myricetin Derivatives Containing Amide, Thioether, and 1,3,4-Thiadiazole Moieties.

  • Xianghui Ruan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

A series of myricetin derivatives containing amide, thioether, and 1,3,4-thiadiazole moieties were designed and synthesized, and their antiviral and antibacterial activities were assessed. The bioassays showed that all the title compounds exhibited potent in vitro antibacterial activities against Xanthomonas citri (Xac), Ralstonia solanacearum (Rs), and Xanthomonas oryzae pv. Oryzae (Xoo). In particular, the compounds 5a, 5f, 5g, 5h, 5i, and 5l, with EC50 values of 11.5⁻27.3 μg/mL, showed potent antibacterial activity against Xac that was better than the commercial bactericides Bismerthiazol (34.7 μg/mL) and Thiodiazole copper (41.1% μg/mL). Moreover, the in vivo antiviral activities against tobacco mosaic virus (TMV) of the target compounds were also tested. Among these compounds, the curative, protection, and inactivation activities of 5g were 49.9, 52.9, and 73.3%, respectively, which were better than that of the commercial antiviral Ribavirin (40.6, 51.1, and 71.1%, respectively). This study demonstrates that myricetin derivatives bearing amide, thioether, and 1,3,4-thiadiazole moieties can serve as potential alternative templates for the development of novel, highly efficient inhibitors against plant pathogenic bacteria and viruses.


Discovery of KIRREL as a biomarker for prognostic stratification of patients with thin melanoma.

  • Sebastian Lundgren‎ et al.
  • Biomarker research‎
  • 2019‎

There is a great unmet clinical need to identify patients with thin primary cutaneous melanomas (T1, Breslow thickness ≤ 1 mm) who have a high risk for tumour recurrence and death from melanoma. Kin of IRRE-like protein 1 (KIRREL/NEPH1) is expressed in podocytes and involved in glomerular filtration. Screening in the Human Protein Atlas portal revealed a particularly high expression of KIRREL in melanoma, both at the mRNA and protein levels. In this study, we followed up on these findings and examined the prognostic value of KIRREL in a population-based cohort. Immunohistochemical expression of KIRREL was examined in tissue microarrays with a subset of primary tumours and paired lymph node metastases from an original cohort of 268 incident cases of melanoma in the Malmö Diet and Cancer study. KIRREL mRNA expression was examined in 103 melanoma cases in The Cancer Genome Atlas (TCGA). Membranous/cytoplasmic expression of KIRREL was detected in 158/185 (85.4%) primary tumours and 18/19 (94.7%) metastases. High expression of KIRREL was significantly associated with several unfavourable clinicopathological factors. High KIRREL protein expression was an independent factor of reduced recurrence free and melanoma specific survival, particularly in thin melanomas, even outperforming absolute thickness and ulceration (HR = 30.85; 95% CI 1.54-616.36 and HR = 6.32 95% CI 1.19-33.65). High mRNA levels of KIRREL were not significantly associated with survival in TCGA. In conclusion, KIRREL is not only a novel potential diagnostic marker for melanoma, but may also be a useful prognostic biomarker for improved stratification of patients with thin melanoma. These findings may be of high clinical relevance and therefore merit further validation.


Transcriptome analysis identifies strong candidate genes for ginsenoside biosynthesis and reveals its underlying molecular mechanism in Panax ginseng C.A. Meyer.

  • Mingzhu Zhao‎ et al.
  • Scientific reports‎
  • 2019‎

Ginseng, Panax ginseng C.A. Meyer, is one of the most important medicinal herbs for human health and medicine in which ginsenosides are known to play critical roles. The genes from the cytochrome P450 (CYP) gene superfamily have been shown to play important roles in ginsenoside biosynthesis. Here we report genome-wide identification of the candidate PgCYP genes for ginsenoside biosynthesis, development of functional SNP markers for its manipulation and systems analysis of its underlying molecular mechanism. Correlation analysis identified 100 PgCYP genes, including all three published ginsenoside biosynthesis PgCYP genes, whose expressions were significantly correlated with the ginsenoside contents. Mutation association analysis identified that six of these 100 PgCYP genes contained SNPs/InDels that were significantly associated with ginsenosides biosynthesis (P ≤ 1.0e-04). These six PgCYP genes, along with all ten published ginsenoside biosynthesis genes from the PgCYP and other gene families, formed a strong co-expression network, even though they varied greatly in spatio-temporal expressions. Therefore, this study has identified six new ginsenoside biosynthesis candidate genes, provided a genome-wide insight into how they are involved in ginsenoside biosynthesis and developed a set of functional SNP markers useful for enhanced ginsenoside biosynthesis research and breeding in ginseng and related species.


Multifaceted Role of PheDof12-1 in the Regulation of Flowering Time and Abiotic Stress Responses in Moso Bamboo (Phyllostachys edulis).

  • Jun Liu‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

DNA binding with one finger (Dof) proteins, forming an important transcriptional factor family, are involved in gene transcriptional regulation, development, stress responses, and flowering responses in annual plants. However, knowledge of Dofs in perennial and erratically flowering moso bamboo is limited. In view of this, a Dof gene, PheDof12-1, was isolated from moso bamboo. PheDof12-1 is located in the nucleus and has the highest expression in palea and the lowest in bract. Moreover, PheDof12-1 expression is high in flowering leaves, then declines during flower development. The transcription level of PheDof12-1 is highly induced by cold, drought, salt, and gibberellin A3 (GA₃) stresses. The functional characteristics of PheDof are researched for the first time in Arabidopsis, and the results show that transgenic Arabidopsis overexpressing PheDof12-1 shows early flowering under long-day (LD) conditions but there is no effect on flowering time under short-day (SD) conditions; the transcription levels of FT, SOC1, and AGL24 are upregulated; and FLC and SVP are downregulated. PheDof12-1 exhibits a strong diurnal rhythm, inhibited by light treatment and induced in dark. Yeast one-hybrid (Y1H) assay shows that PheDof12-1 can bind to the promoter sequence of PheCOL4. Taken together, these results indicate that PheDof12-1 might be involved in abiotic stress and flowering time, which makes it an important candidate gene for studying the molecular regulation mechanisms of moso bamboo flowering.


Circulating serum vitamin D levels and total body bone mineral density: A Mendelian randomization study.

  • Jing-Yi Sun‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

Until recently, randomized controlled trials have not demonstrated convincing evidence that vitamin D, or vitamin D in combination with calcium supplementation could improve bone mineral density (BMD), osteoporosis and fracture. It remains unclear whether vitamin D levels are causally associated with total body BMD. Here, we performed a Mendelian randomization study to investigate the association of vitamin D levels with total body BMD using a large-scale vitamin D genome-wide association study (GWAS) dataset (including 79 366 individuals) and a large-scale total body BMD GWAS dataset (including 66,628 individuals). We selected three Mendelian randomization methods including inverse-variance weighted meta-analysis (IVW), weighted median regression and MR-Egger regression. All these three methods did not show statistically significant association of genetically increased vitamin D levels with total body BMD. Importantly, our findings are consistent with recent randomized clinical trials and Mendelian randomization study. In summary, we provide genetic evidence that increased vitamin D levels could not improve BMD in the general population. Hence, vitamin D supplementation alone may not be associated with reduced fracture incidence among community-dwelling adults without known vitamin D deficiency, osteoporosis, or prior fracture.


Catalpol Exerts an Anti-Epilepticus Effect, Possibly by Regulating the Nrf2-Keap1-ARE Signaling Pathway.

  • Jing Gao‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Status epilepticus (SE) is a refractory neurological disease with high mortality and morbidity rates. SE can be induced by numerous factors, including oxidative stress. Catalpol has several biological activities, including regulating the oxidative stress response. However, the role of catapol in SE has not been fully elucidated. MATERIAL AND METHODS Thirty Wistar rats were randomly and equally divided into 3 groups: a control group, an SE group established by LiCl-pilocarpine intraperitoneal injection, and an SE+catalpol group established administering catalpol to SE rats. Epileptic seizure level and after-discharge duration (ADD) were analyzed. Cognitive function was assessed by Morris water maze. Myeloperoxidase (MPO) and superoxide dismutase (SOD) activities were tested. Keap1 and ARE mRNA expressions were detected by real-time PCR. Nrf2 protein expression was determined by Western blot. RESULTS Catalpol significantly decreased epileptic seizure level, extended ADD, and improved cognitive function compared with the SE group (P<0.05). MPO was increased, SOD was reduced, Keap1 mRNA was upregulated, and Nrf2 protein and ARE mRNA were reduced in the SE group compared with the control group (P<0.05). Catalpol markedly decreased MPO, enhanced SOD activity, decreased Keap1 mRNA level, and elevated Nrf2 protein and ARE mRNA expressions compared with the SE group (P<0.05). CONCLUSIONS Catalpol plays an anti-epileptic role and improves cognitive function by regulating the Nrf2-Keap1-ARE signaling pathway to inhibit oxidative stress response.


Novel long non-coding RNA LINC02532 promotes gastric cancer cell proliferation, migration, and invasion in vitro.

  • Cheng Zhang‎ et al.
  • World journal of gastrointestinal oncology‎
  • 2019‎

Long non-coding RNAs (lncRNAs) are a kind of single-stranded RNA of more than 200 nucleotides in length and have no protein-coding function. Amounting studies have indicated that lncRNAs could play a vital role in the initiation and development of cancers, including gastric cancer (GC). Considering the crucial functions of lncRNAs, the identification and exploration of novel lncRNAs in GC is necessary.


Long non-coding RNA EPIC1 inhibits viability and invasion of osteosarcoma cells by promoting MEF2D ubiquitylation.

  • Wei Zhao‎ et al.
  • International journal of biological macromolecules‎
  • 2019‎

Long non-coding RNAs (lncRNAs) can modulate gene expression through different mechanisms, but the fundamental molecular mechanism behind EPIC1 and osteosarcoma (OS) was poorly understood.


The Complete Plastid Genome of Magnolia zenii and Genetic Comparison to Magnoliaceae species.

  • Yongfu Li‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.


TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.

  • Fang Hua‎ et al.
  • Gastroenterology‎
  • 2019‎

Activation of Wnt signaling to β-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway.


Characterization and validation of potential therapeutic targets based on the molecular signature of patient-derived xenografts in gastric cancer.

  • Zuhua Chen‎ et al.
  • Journal of hematology & oncology‎
  • 2018‎

Patient-derived xenograft (PDX) models with definite molecular signature are attractive preclinical models for development of novel targeted drugs. Here, we profiled and explored potential therapeutic targets based on characterized PDX models for advanced gastric cancer (AGC).


CCAAT/enhancer-binding protein β overexpression alleviates myocardial remodelling by regulating angiotensin-converting enzyme-2 expression in diabetes.

  • Yuanyuan Tie‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer-binding protein β (C/EBPβ), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin-converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPβ in diabetes and whether ACE2 expression is regulated by C/EBPβ. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPβ or sh-C/EBPβ or treated with valsartan after 12 weeks to observe the effects of C/EBPβ. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti-fibrosis, anti-apoptosis and regulatory mechanisms of C/EBPβ. C/EBPβ expression was down-regulated in diabetic mice and HG-induced cardiac neonatal cells. C/EBPβ overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up-regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPβ to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up-regulation of ACE2 expression by C/EBPβ overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.


Autophagy is required for human umbilical cord mesenchymal stem cells to improve spatial working memory in APP/PS1 transgenic mouse model.

  • Wen Li‎ et al.
  • Stem cell research & therapy‎
  • 2018‎

Recent studies have shown that autophagy plays a central role in mesenchymal stem cells (MSCs), and many studies have shown that human umbilical cord MSCs (huMSCs) can treat Alzheimer's disease (AD) through a variety of mechanisms. However, no studies have looked at the effects of autophagy on neuroprotective function of huMSCs in the AD mouse model. Thus, in this study we investigated whether inhibition of autophagy could weaken or block the function of huMSCs through in vitro and in vivo experiments.


Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis.

  • Tong Wei‎ et al.
  • Journal of the American Heart Association‎
  • 2017‎

Emerging evidence indicates that impaired angiogenesis may contribute to hypertension-induced cardiac remodeling. The nicotinamide adenine dinucleotide-dependent deacetylase Sirtuin 3 (SIRT3) has the potential to modulate angiogenesis, but this has not been confirmed. As such, the aim of this study was to examine the relationship between SIRT3-mediated angiogenesis and cardiac remodeling.


Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD.

  • Adil Mardinoglu‎ et al.
  • Molecular systems biology‎
  • 2017‎

To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: