Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 994 papers

MicroRNA-218-5p as a Potential Target for the Treatment of Human Osteoarthritis.

  • Jun Lu‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Emerging evidence suggests that dysregulated microRNAs (miRNAs) play a pivotal role in osteoarthritis (OA), but the role of specific miRNAs remains unclear. Accordingly, we identified OA-associated miRNAs and functional validation of results. Here, we demonstrate that miR-218-5p is significantly upregulated in moderate and severe OA and correlates with scores on a modified Mankin scale. Through gain-of-function and loss-of-function studies, miR-218-5p was shown to significantly affect matrix synthesis gene expression and chondrocyte proliferation and apoptosis. Using SW1353 and C28/I2 cells, PIK3C2A mRNA was identified as a target of miR-218-5p. Downregulation of miR-218-5p dramatically promoted expression of PIK3C2A and its downstream target proteins, such as Akt, mTOR, S6, and 4EBP1. More importantly, OA mice exposed to a miR-218-5p inhibitor were protected from cartilage degradation and had reduced proteoglycan loss and reduced loss of articular chondrocyte cellularity compared with control mice. miR-218-5p is a novel inducer of cartilage destruction via modulation of PI3K/Akt/mTOR signaling. Inhibition of endogenous miR-218-5p expression/activity appears to be an attractive approach to OA treatment.


MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma.

  • Chen Wang‎ et al.
  • Scientific reports‎
  • 2017‎

Osteosarcoma (OS) is the most common primary bone malignancy and remains a leading cause of cancer-related deaths in adolescents. Emerging evidence indicates that microRNAs (miRNAs) are correlated with clinical and biological characteristics of OS. However, the involvement of miR-199a-5p in OS development remains unclear. In this study, we examined the function of miR-199a-5p in vitro and in vivo. The results showed that miR-199a-5p was significantly up-regulated in OS patient tissues and cells. The inhibition of miR-199a-5p led to a significant decrease in cell proliferation and tumour growth. We further demonstrated that miR-199a-5p could directly bind to the 3'UTRs of the mRNA of both PIAS3 and p27 and mediate a decrease in the protein levels of PIAS3 and p27, thereby stimulating STAT3 activation and cell cycle progression in OS cells. Rescue experiments of PIAS3 and p27 further revealed that PIAS3 and p27 were functional targets of miR-199a-5p. Moreover, enhancing the expressions of both PIAS3 and p27 using miR-199a-5p-targeted inhibitors in an OS xenograft model was shown to be a promising approach for OS clinical therapy. Our findings indicate that the pathway of miR-199a-5p targeting both PIAS3 and p27 is a possible mechanism that contributes to tumour growth in OS.


Ling-Yang-Gou-Teng-decoction prevents vascular dementia through inhibiting oxidative stress induced neurovascular coupling dysfunction.

  • Xin Zhao‎ et al.
  • Journal of ethnopharmacology‎
  • 2018‎

Vascular dementia (VaD) is the common cognitive disorder derived mainly from lacunar stroke (LS). The oxidative stress induced neurovascular coupling (NVC) dysfunction involves in the pathogenesis of VaD. Currently, there is no specific drug for VaD. Ling-Yang-Gou-Teng -Decoction (LG), a well-known traditional Chinese formula, has been used for preventing VaD in clinic.


Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

  • Alison M Taylor‎ et al.
  • Cancer cell‎
  • 2018‎

Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy.


Oncogenic Signaling Pathways in The Cancer Genome Atlas.

  • Francisco Sanchez-Vega‎ et al.
  • Cell‎
  • 2018‎

Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy.


Natural cyclopeptide RA-V inhibits the NF-κB signaling pathway by targeting TAK1.

  • Zhe Wang‎ et al.
  • Cell death & disease‎
  • 2018‎

Rubiaceae-type cyclopeptides (RAs) are a type of plant cyclopeptides from the Rubia that have garnered significant attention owing to their unique bicyclic structures and amazing antitumour activities. Our recent work has shown that RAs suppress inflammation and angiogenesis and induce apoptosis. However, the underlying mechanism and targets remained unknown. Nuclear factor κB (NF-κB) signaling pathway plays a critical role in these biological processes, prompting us to investigate whether and how RAs affect this pathway. By screening compound libraries using NF-κB-dependent luciferase reporter, we observed that RA-V is the best NF-κB inhibitor. Further experiments demonstrated that RA-V interrupted the TAK1-TAB2 interaction and targeted TAK1 in this pathway. Moreover, RA-V prevented endotoxin shock and inhibited NF-κB activation and tumor growth in vivo. These findings clarify the mechanism of RA-V on NF-κB pathway and might account for the majority of known bioactivities of RA-V, which will help RA-V develop as new antiinflammatory and antitumour therapies.


Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a.

  • Xiaoru Xin‎ et al.
  • Molecular cancer‎
  • 2018‎

Long noncoding RNA HULC is highly up-regulation in human hepatocellular carcinoma (HCC). However, the functions of HULC in hepatocarcinogenesis remains unclear.


Knockdown of SSATX, an alternative splicing variant of the SAT1 gene, promotes melanoma progression.

  • Qiong Yang‎ et al.
  • Gene‎
  • 2019‎

Alternative splicing can generate multiple protein messages from a single gene and has emerged as an important mechanism to regulate cancer pathways. The human SAT1 gene produces two transcript variants: one translates spermidine/spermine N-1 acetyltransferase (SSAT1), the rate-limiting enzyme in the catabolism of polyamines, and the other generates SSATX, which has largely unknown biological functions. Here, we used experimental data and analyses of several melanoma transcriptome datasets to reveal that SSATX is weakly expressed in melanoma cells. SSATX knockdown promoted the proliferation, migration, and invasion of human melanoma cells via the activation of the Wnt signaling pathway in a manner that was independent of SSAT1 expression. Based on our data, we propose that SSATX functions as a long non-coding RNA prior to its degradation in melanoma cells. Overall, our findings indicate that SSATX acts as a tumor suppressor, which may aid the future diagnosis and treatment of melanoma.


E. coli Enterotoxin LtB Enhances Vaccine-Induced Anti-H. pylori Protection by Promoting Leukocyte Migration into Gastric Mucus via Inflammatory Lesions.

  • Xiaoyan Peng‎ et al.
  • Cells‎
  • 2019‎

Current studies indicate that the anti-H. pylori protective efficacy of oral vaccines to a large extent depends on using mucosal adjuvants like E. coli heat-lable enterotoxin B unit (LtB). However, the mechanism by which Th17/Th1-driven cellular immunity kills H. pylori and the role of LtB remains unclear. Here, two L.lactis strains, expressing H. pylori NapA and LtB, respectively, were orally administrated to mice. As observed, the administration of LtB significantly enhanced the fecal SIgA level and decreased gastric H. pylori colonization, but also markedly aggravated gastric inflammatory injury. Both NapA group and NapA+LtB group had elevated splenocyte production of IL-8, IL-10, IL-12, IL-17, IL-23 and INF-γ. Notably, gastric leukocytes' migration or leakage into the mucus was observed more frequently in NapA+LtB group than in NapA group. This report is the first that discusses how LtB enhances vaccine-induced anti-H. pylori efficacy by aggravating gastric injury and leukocytes' movement into the mucus layer. Significantly, it brings up a novel explanation for the mechanism underlying mucosal cellular immunity destroying the non-invasive pathogens. More importantly, the findings suggest the necessity to further evaluate LtB's potential hazards to humans before extending its applications. Thus, this report can provide considerable impact on the fields of mucosal immunology and vaccinology.


Vitamin E δ-tocotrienol sensitizes human pancreatic cancer cells to TRAIL-induced apoptosis through proteasome-mediated down-regulation of c-FLIPs.

  • Rony A Francois‎ et al.
  • Cancer cell international‎
  • 2019‎

Vitamin E δ-tocotrienol (VEDT), a vitamin E compound isolated from sources such as palm fruit and annatto beans, has been reported to have cancer chemopreventive and therapeutic effects.


Prospective Validation of an Ex Vivo, Patient-Derived 3D Spheroid Model for Response Predictions in Newly Diagnosed Ovarian Cancer.

  • Stephen Shuford‎ et al.
  • Scientific reports‎
  • 2019‎

Although 70-80% of newly diagnosed ovarian cancer patients respond to first-line therapy, almost all relapse and five-year survival remains below 50%. One strategy to increase five-year survival is prolonging time to relapse by improving first-line therapy response. However, no biomarker today can accurately predict individual response to therapy. In this study, we present analytical and prospective clinical validation of a new test that utilizes primary patient tissue in 3D cell culture to make patient-specific response predictions prior to initiation of treatment in the clinic. Test results were generated within seven days of tissue receipt from newly diagnosed ovarian cancer patients obtained at standard surgical debulking or laparoscopic biopsy. Patients were followed for clinical response to chemotherapy. In a study population of 44, the 32 test-predicted Responders had a clinical response rate of 100% across both adjuvant and neoadjuvant treated populations with an overall prediction accuracy of 89% (39 of 44, p < 0.0001). The test also functioned as a prognostic readout with test-predicted Responders having a significantly increased progression-free survival compared to test-predicted Non-Responders, p = 0.01. This correlative accuracy establishes the test's potential to benefit ovarian cancer patients through accurate prediction of patient-specific response before treatment.


Differentially expressed mRNAs, lncRNAs, and miRNAs with associated co-expression and ceRNA networks in ankylosing spondylitis.

  • Chen Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by systemic inflammation and pathological osteogenesis. However, the genetic etiology of AS remains largely unknown. This study aimed to explore the potential role of coding and noncoding genes in the genetic mechanism of AS. Using microarray analyses, this study comprehensively compared lncRNA, microRNA, and mRNA profiles in hip joint ligament tissues from patients with AS and controls. A total of 661 lncRNAs, 574 mRNAs, and 22 microRNAs were differentially expressed in patients with AS compared with controls. Twenty-two of these genes were then validated using real-time polymerase chain reaction. Gene ontology and pathway analyses were performed to explore the principal functions of differentially expressed genes. The pathways were involved mainly in immune regulation, intercellular signaling, osteogenic differentiation, protein synthesis, and degradation. Gene signal transduction network, coding-noncoding co-expression network, and competing endogenous RNA expression network were constructed using bioinformatics methods. Then, two miRNAs, miR-17-5p and miR-27b-3p, that could increase the osteogenic differentiation potentials of ligament fibroblasts were identified. Finally, differentially expressed, five lncRNAs, four miRNAs, and five mRNAs were validated using quantitative real-time polymerase chain reaction. These results suggested that mRNAs, lncRNAs, and microRNAs were involved in AS pathogenesis. The findings might help characterize the pathogenesis of AS and provide novel therapeutic targets for patients with AS in the future.


Prevalence, risk factors and associated adverse pregnancy outcomes of anaemia in Chinese pregnant women: a multicentre retrospective study.

  • Li Lin‎ et al.
  • BMC pregnancy and childbirth‎
  • 2018‎

Anaemia in pregnant women is a public health problem, especially in developing countries. The aim of this study was to assess the prevalence and related risk factors of anaemia during pregnancy in a large multicentre retrospective study (n = 44,002) and to determine the adverse pregnancy outcomes in women with or without anaemia.


Common differentially expressed proteins were found in mouse cleft palate models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and retinoic acid.

  • Chen Wang‎ et al.
  • Environmental toxicology and pharmacology‎
  • 2019‎

Cleft palate(CP) is a widely studied congenital malformation. However, its etiology and pathogenesis still remain unclear. Proteins are fundamental molecules that participate in every biological process within cells. In this study, we established CP mouse models induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and retinoic acid (RA), using proteomics technology isobaric tags for relative and absolute quantitation (iTRAQ) to investigate the key proteins in the formation of CP. Pregnant mice were given a gavage of TCDD 28μg/kg or retinoic acid 80mg/kg of body weight or equivalent corn oil at gestational day 10.5(GD10.5) and sacrificed at GD 17.5. Foetal mice were recorded and collected for further detection. Western blot was performed to verify the iTRAQ results. Eventually, we obtained 18 common differentially expressed proteins in TCDD group and RA group compared with normal control, 17 up-regulated and 1 down-regulated. 14-3-3sigma and Annexin A1 were up-regulated in experimental groups at GD17.5, which was consistent with Western blot. We speculated that the common differentially expressed proteins might be one of the molecular mechanisms in the formation of cleft palate.


Identification of the Novel Host Protein Interacting With the Structural Protein VP1 of Chinese Sacbrood Virus by Yeast Two-Hybrid Screening.

  • Xiyan Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Chinese sacbrood virus (CSBV) is the major cause and lead to the collapse of Apis cerana colonies. VP1, the structural protein of CSBV, shows the highest variation in the amino acid sequences among proteins from different CSBV strains as well as exhibits excellent immunogenicity. However, its function with host protein still remains unclear. To clarify its function with host protein, we screened out host cellular proteins that interact with VP1 using the membrane protein yeast two-hybrid system. In addition, we verified interactions between heat shock protein 70 cognate 5 (Hsp70-c5) and VP1 using glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. VP1 and Hsp70-c5 were colocalized in the cytoplasm and nucleus. Using western blot and real-time polymerase chain reaction (PCR), Hsp70-c5 expression in CSBV-infected larvae was upregulated compared with that in healthy larvae. We observed that when we silenced Hsp70-c5, VP1 expression was significantly downregulated. These results demonstrate that Hsp70-c5 is involved in at least one stage(s) of the viral life cycle.


Evaluation of Cervical Intraepithelial Neoplasia Occurrence Following the Recorded Onset of Persistent High-Risk Human Papillomavirus Infection: A Retrospective Study on Infection Duration.

  • Cordelle Lazare‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Objectives: Persistent high-risk human papillomavirus infection is a major factor in the development of cervical intraepithelial neoplasia and cervical cancer. However, the exact point during this infection that cervical intraepithelial neoplasia develops has eluded researchers. Therefore, we designed a study investigating infection duration between the recorded onset of persistent high-risk human papillomavirus infection and cervical intraepithelial neoplasia development. Methods: Basic descriptive statistics, including the Chi-square test and the Kaplan-Meier method, were used to retrospectively analyze data of 277 women who underwent human papillomavirus genotyping, exhibited persistent high-risk human papillomavirus infection, were cervical cytology negative at enrollment, and developed cervical intraepithelial neoplasia at some point during follow-up. Results: Mean number of cervical cytology and human papillomavirus tests was 2.31 per patient (range: 2-8). Human papillomavirus 16, 52, 58, and 33 accounted for 21.64% (132/610), 21.64% (132/610), 15.90% (97/610), and 10.66% (65/610) of infections, respectively. 42.24% (117/277) and 57.76% (160/277) of women were diagnosed with cervical intraepithelial neoplasia 1 and cervical intraepithelial neoplasia 2+ after persistent high-risk human papillomavirus infection, with mean follow-up times of 18.15 (11.81) and 19.82 (13.31) months, respectively. Cervical intraepithelial neoplasia occurred between 4 and 70 months following the recorded onset of persistent high-risk human papillomavirus infection and 73.65% (204/277) of women developed cervical intraepithelial neoplasia within 24 months. Conclusion: Human papillomavirus 16, 52, 58, and 33 were the most prevalent high-risk human papillomavirus types in a group of women in which the majority developed cervical intraepithelial neoplasia within 24 months of persistent infection.


Enhancing the thermostability of phospholipase D from Streptomyces halstedii by directed evolution and elucidating the mechanism of a key amino acid residue using molecular dynamics simulation.

  • Lin Huang‎ et al.
  • International journal of biological macromolecules‎
  • 2020‎

To enhance the thermostability of phospholipase D (PLD), error-prone polymerase chain reaction method was used to create mutants of PLD (PLDsh) from Streptomyces halstedii. One desirable mutant (S163F) with Ser to Phe substitution at position 163 was screened with high-throughput assay. S163F exhibited a 10 °C higher optimum temperature than wild-type (WT). Although WT exhibited almost no activity after incubating at 50 °C for 40 min, S163F still displayed 27% of its highest activity after incubating at 50 °C for 60 min. Furthermore, the half-life of S163F at 50 °C was 3.04-fold higher than that of WT. The analysis of molecular dynamics simulation suggested that the Ser163Phe mutation led to the formation of salt bridge between Lys300 and Glu314 and a stronger hydrophobic interaction of Phe163 with Pro341, Leu342, and Trp460, resulting in an increased structural rigidity and overall enhanced stability at high temperature. This study provides novel insights on PLD tolerance to high temperature by investigating the structure-activity relationship. In addition, it provides strong theoretical foundation and preliminary information on the engineering of PLD with improved characteristics to meet industrial demand.


Molecular recognition of human islet amyloid polypeptide assembly by selective oligomerization of thioflavin T.

  • Lanlan Yu‎ et al.
  • Science advances‎
  • 2020‎

Selective oligomerization is a common phenomenon existing widely in the formation of intricate biological structures in nature. The precise design of drug molecules with an oligomerization state that specifically recognizes its receptor, however, remains substantially challenging. Here, we used scanning tunneling microscopy (STM) to identify the oligomerization states of an amyloid probe thioflavin T (ThT) on hIAPP8-37 assembly to be exclusively even numbers. We demonstrate that both adhesive interactions between ThT and the protein substrate and cohesive interactions among ThT molecules govern the oligomerization state of the bounded ThT. Specifically, the work of the cohesive interaction between two head/tail ThTs is determined to be 6.4 k B T, around 50% larger than that of the cohesive interaction between two side-by-side ThTs (4.2 k B T). Overall, our STM imaging and theoretical understanding at the single-molecule level provide valuable insights into the design of drug compounds using the selective oligomerization of molecular probes to recognize protein self-assembly.


CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer.

  • Zhenxing Wang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2020‎

The progression of lung cancer is majorly facilitated by TAMs (tumour-associated macrophages). However, how the TAMs infiltrate the NSCLC microenvironment and the associated biochemical are not fully elaborated. Research has revealed that changes in CtBP1 modulates innate immunity. Here, we investigated if CtBP1 facilitates infiltration of TAM and the subsequent progression of NSCLC. Immunohistochemical analysis was carried out in 96 NSCLC patients to estimate the clinicopathological importance of CtBP1 in the disease. CtBP1 overexpression and knockdown were carried out to assess the activity of CtBP1 in NSCLC cells. Elevated expression of CtBP1 correlated positively with TAMs infiltration into NSCLC tissues, induced EMT (epithelial-mesenchymal transition) in NSCLC cells and modulated the activated NF-κB signalling pathway leading to increase in CCL2 secretion from NSCLC cells, thus promoting TAM recruitment and polarization. TAM induction and polarization reduced significantly on exhausting p65 in NSCLC cells with CtBP1. Moreover, infiltration of TMAs was reduced remarkably on antagonist-mediated blocking of CCR2 and impeded the progression of NSCLC in a mouse model. These findings thus show a novel insight into the process of CtBP1-regulated TAM infiltration in NSCLC.


SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs.

  • Qun Chen‎ et al.
  • Cell research‎
  • 2021‎

Dietary microRNAs have been shown to be absorbed by mammals and regulate host gene expression, but the absorption mechanism remains unknown. Here, we show that SIDT1 expressed on gastric pit cells in the stomach is required for the absorption of dietary microRNAs. SIDT1-deficient mice show reduced basal levels and impaired dynamic absorption of dietary microRNAs. Notably, we identified the stomach as the primary site for dietary microRNA absorption, which is dramatically attenuated in the stomachs of SIDT1-deficient mice. Mechanistic analyses revealed that the uptake of exogenous microRNAs by gastric pit cells is SIDT1 and low-pH dependent. Furthermore, oral administration of plant-derived miR2911 retards liver fibrosis, and this protective effect was abolished in SIDT1-deficient mice. Our findings reveal a major mechanism underlying the absorption of dietary microRNAs, uncover an unexpected role of the stomach and shed light on developing small RNA therapeutics by oral delivery.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: