Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 127 papers

Long-Term Land Use Affects Phosphorus Speciation and the Composition of Phosphorus Cycling Genes in Agricultural Soils.

  • Jin Liu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Agriculturally-driven land transformation is increasing globally. Improving phosphorus (P) use efficiency to sustain optimum productivity in diverse ecosystems, based on knowledge of soil P dynamics, is also globally important in light of potential shortages of rock phosphate to manufacture P fertilizer. We investigated P chemical speciation and P cycling with solution 31P nuclear magnetic resonance, P K-edge X-ray absorption near-edge structure spectroscopy, phosphatase activity assays, and shotgun metagenomics in soil samples from long-term agricultural fields containing four different land-use types (native and tame grasslands, annual croplands, and roadside ditches). Across these land use types, native and tame grasslands showed high accumulation of organic P, principally orthophosphate monoesters, and high acid phosphomonoesterase activity but the lowest abundance of P cycling genes. The proportion of inositol hexaphosphates (IHP), especially the neo-IHP stereoisomer that likely originates from microbes rather than plants, was significantly increased in native grasslands than croplands. Annual croplands had the largest variances of soil P composition, and the highest potential capacity for P cycling processes based on the abundance of genes coding for P cycling processes. In contrast, roadside soils had the highest soil Olsen-P concentrations, lowest organic P, and highest tricalcium phosphate concentrations, which were likely facilitated by the neutral pH and high exchangeable Ca of these soils. Redundancy analysis demonstrated that IHP by NMR, potential phosphatase activity, Olsen-P, and pH were important P chemistry predictors of the P cycling bacterial community and functional gene composition. Combining chemical and metagenomics results provides important insights into soil P processes and dynamics in different land-use ecosystems.


Why does oriental arborvitae grow better when mixed with black locust: Insight on nutrient cycling?

  • Xuedong Chen‎ et al.
  • Ecology and evolution‎
  • 2018‎

To identify why tree growth differs by afforestation type is a matter of prime concern in forestry. A study was conducted to determine why oriental arborvitae (Platycladus orientalis) grows better in the presence of black locust (Robinia pseudoacacia) than in monoculture. Different types of stands (i.e., monocultures and mixture of black locust and oriental arborvitae, and native grassland as a control) were selected in the Loess Plateau, China. The height and diameter at breast height of each tree species were measured, and soil, shoot, and root samples were sampled. The arbuscular mycorrhizal (AM) attributes, shoot and root nutrient status, height and diameter of black locust were not influenced by the presence of oriental arborvitae. For oriental arborvitae, however, growing in mixture increased height and diameter and reduced shoot Mn, Ca, and Mg contents, AM fungal spore density, and colonization rate. Major changes in soil properties also occurred, primarily in soil water, NO 3-N, and available K levels and in soil enzyme activity. The increase in soil water, N, and K availability in the presence of black locust stimulated oriental arborvitae growth, and black locust in the mixed stand seems to suppress the development of AM symbiosis in oriental arborvitae roots, especially the production of AM fungal spores and vesicles, through improving soil water and N levels, thus freeing up carbon to fuel plant growth. Overall, the presence of black locust favored oriental arborvitae growth directly by improving soil water and fertility and indirectly by repressing AM symbiosis in oriental arborvitae roots.


KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer.

  • Wenting Liao‎ et al.
  • Cancer cell‎
  • 2019‎

The biological functions and mechanisms of oncogenic KRASG12D (KRAS∗) in resistance to immune checkpoint blockade (ICB) therapy are not fully understood. We demonstrate that KRAS∗ represses the expression of interferon regulatory factor 2 (IRF2), which in turn directly represses CXCL3 expression. KRAS∗-mediated repression of IRF2 results in high expression of CXCL3, which binds to CXCR2 on myeloid-derived suppressor cells and promotes their migration to the tumor microenvironment. Anti-PD-1 resistance of KRAS∗-expressing tumors can be overcome by enforced IRF2 expression or by inhibition of CXCR2. Colorectal cancer (CRC) showing higher IRF2 expression exhibited increased responsiveness to anti-PD-1 therapy. The KRAS∗-IRF2-CXCL3-CXCR2 axis provides a framework for patient selection and combination therapies to enhance the effectiveness of ICB therapy in CRC.


β-aminoisobutyrics acid, a metabolite of BCAA, activates the AMPK/Nrf-2 pathway to prevent ferroptosis and ameliorates lung ischemia-reperfusion injury.

  • Ziyue Zhang‎ et al.
  • Molecular medicine (Cambridge, Mass.)‎
  • 2023‎

Lung ischemia-reperfusion (I/R) injury is a serious clinical problem without effective treatment. Enhancing branched-chain amino acids (BCAA) metabolism can protect against cardiac I/R injury, which may be related to bioactive molecules generated by BCAA metabolites. L-β-aminoisobutyric acid (L-BAIBA), a metabolite of BCAA, has multi-organ protective effects, but whether it protects against lung I/R injury is unclear.


POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1.

  • Boshi Wang‎ et al.
  • EBioMedicine‎
  • 2019‎

Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood.


Comparative transcriptome analyses of oleaginous Botryococcus braunii race A reveal significant differences in gene expression upon cobalt enrichment.

  • Pengfei Cheng‎ et al.
  • Biotechnology for biofuels‎
  • 2018‎

Botryococcus braunii is known for its high hydrocarbon content, thus making it a strong candidate feedstock for biofuel production. Previous study has revealed that a high cobalt concentration can promote hydrocarbon synthesis and it has little effect on growth of B. braunii cells. However, mechanisms beyond the cobalt enrichment remain unknown. This study seeks to explore the physiological and transcriptional response and the metabolic pathways involved in cobalt-induced hydrocarbon synthesis in algae cells.


An efficient immunization strategy for community networks.

  • Kai Gong‎ et al.
  • PloS one‎
  • 2013‎

An efficient algorithm that can properly identify the targets to immunize or quarantine for preventing an epidemic in a population without knowing the global structural information is of obvious importance. Typically, a population is characterized by its community structure and the heterogeneity in the weak ties among nodes bridging over communities. We propose and study an effective algorithm that searches for bridge hubs, which are bridge nodes with a larger number of weak ties, as immunizing targets based on the idea of referencing to an expanding friendship circle as a self-avoiding walk proceeds. Applying the algorithm to simulated networks and empirical networks constructed from social network data of five US universities, we show that the algorithm is more effective than other existing local algorithms for a given immunization coverage, with a reduced final epidemic ratio, lower peak prevalence and fewer nodes that need to be visited before identifying the target nodes. The effectiveness stems from the breaking up of community networks by successful searches on target nodes with more weak ties. The effectiveness remains robust even when errors exist in the structure of the networks.


Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4(+) CD25(+) regulatory T cells population.

  • Quan-You Zheng‎ et al.
  • Scientific reports‎
  • 2016‎

Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3(-/-)) as skin graft donors or recipients. Compared with C3(+/+) B6 allografts, C3(-/-) B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2(bm12) B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3(+/+) allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3(-/-) allografts. Moreover, C3(-/-) allografts caused attenuated Th1/Th17 responses, but increased CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell expression markedly in local intragraft and H-2(bm12) recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4(+) CD25(+) Treg cell population expansion and attenuated Th1/Th17 response.


Properties and functions of KATP during mouse perinatal development.

  • Li Nie‎ et al.
  • Biochemical and biophysical research communications‎
  • 2012‎

Prevailing data suggest that ATP-sensitive potassium channels (K(ATP)) contribute to a surprising resistance to hypoxia in mammalian embryos, thus we aimed to characterize the developmental changes of K(ATP) channels in murine fetal ventricular cardiomyocytes.


Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw.

  • Junhua Zhang‎ et al.
  • Biotechnology for biofuels‎
  • 2011‎

In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.


The carbohydrate-binding module of xylanase from Nonomuraea flexuosa decreases its non-productive adsorption on lignin.

  • Junhua Zhang‎ et al.
  • Biotechnology for biofuels‎
  • 2013‎

The enzymatic hydrolysis step converting lignocellulosic materials into fermentable sugars is recognized as one of the major limiting steps in biomass-to-ethanol process due to the low efficiency of enzymes and their cost. Xylanases have been found to be important in the improvement of the hydrolysis of cellulose due to the close interaction of cellulose and xylan. In this work, the effects of carbohydrate-binding module (CBM family II) of the xylanase 11 from Nonomuraea flexuosa (Nf Xyn11) on the adsorption and hydrolytic efficiency toward isolated xylan and lignocellulosic materials were investigated.


Canola Root-Associated Microbiomes in the Canadian Prairies.

  • Chih-Ying Lay‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment), and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that seeding density and plant nutrition management modified the abundance of other bacterial and fungal taxa forming the core microbiomes of canola that are expected to impact crop growth. This work helps us to understand the microbial assemblages associated with canola grown under common agronomic practices and indicates microorganisms that can potentially benefit or reduce the yield of canola.


A rapid and robust method for selective isotope labeling of proteins.

  • Myat T Lin‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2011‎

Amino-acid selective isotope labeling of proteins offers numerous advantages in mechanistic studies by revealing structural and functional information unattainable from a crystallographic approach. However, efficient labeling of proteins with selected amino acids necessitates auxotrophic hosts, which are often not available. We have constructed a set of auxotrophs in a commonly used Escherichia coli expression strain C43(DE3), a derivative of E. coli BL21(DE3), which can be used for isotopic labeling of individual amino acids or sets of amino acids. These strains have general applicability to either soluble or membrane proteins that can be expressed in E. coli. We present examples in which proteins are selectively labeled with (13)C- and (15)N-amino acids and studied using magic-angle spinning solid-state NMR and pulsed EPR, demonstrating the utility of these strains for biophysical characterization of membrane proteins, radical-generating enzymes and metalloproteins.


TumorFusions: an integrative resource for cancer-associated transcript fusions.

  • Xin Hu‎ et al.
  • Nucleic acids research‎
  • 2018‎

Gene fusion represents a class of molecular aberrations in cancer and has been exploited for therapeutic purposes. In this paper we describe TumorFusions, a data portal that catalogues 20 731 gene fusions detected in 9966 well characterized cancer samples and 648 normal specimens from The Cancer Genome Atlas (TCGA). The portal spans 33 cancer types in TCGA. Fusion transcripts were identified via a uniform pipeline, including filtering against a list of 3838 transcript fusions detected in a panel of 648 non-neoplastic samples. Fusions were mapped to somatic DNA rearrangements identified using whole genome sequencing data from 561 cancer samples as a means of validation. We observed that 65% of transcript fusions were associated with a chromosomal alteration, which is annotated in the portal. Other features of the portal include links to SNP array-based copy number levels and mutational patterns, exon and transcript level expressions of the partner genes, and a network-based centrality score for prioritizing functional fusions. Our portal aims to be a broadly applicable and user friendly resource for cancer gene annotation and is publicly available at http://www.tumorfusions.org.


COMPASS server for remote homology inference.

  • Ruslan I Sadreyev‎ et al.
  • Nucleic acids research‎
  • 2007‎

COMPASS is a method for homology detection and local alignment construction based on the comparison of multiple sequence alignments (MSAs). The method derives numerical profiles from given MSAs, constructs local profile-profile alignments and analytically estimates E-values for the detected similarities. Until now, COMPASS was only available for download and local installation. Here, we present a new web server featuring the latest version of COMPASS, which provides (i) increased sensitivity and selectivity of homology detection; (ii) longer, more complete alignments; and (iii) faster computational speed. After submission of the query MSA or single sequence, the server performs searches versus a user-specified database. The server includes detailed and intuitive control of the search parameters. A flexible output format, structured similarly to BLAST and PSI-BLAST, provides an easy way to read and analyze the detected profile similarities. Brief help sections are available for all input parameters and output options, along with detailed documentation. To illustrate the value of this tool for protein structure-functional prediction, we present two examples of detecting distant homologs for uncharacterized protein families. Available at http://prodata.swmed.edu/compass.


The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area.

  • Yurong Yang‎ et al.
  • PloS one‎
  • 2017‎

Glomalin-related soil protein (GRSP), a widespread glycoprotein produced by arbuscular mycorrhizal fungi (AMF), is crucial for ecosystem functioning and ecological restoration. In the present study, an investigation was conducted to comprehensively analyze the effects of heavy metal (HM) contamination on AMF status, soil properties, aggregate distribution and stability, and their correlations at different soil depths (0-10, 10-20, 20-30, 30-40 cm). Our results showed that the mycorrhizal colonization (MC), hyphal length density (HLD), GRSP, soil organic matter (SOM) and soil organic carbon (SOC) were significantly inhibited by Pb compared to Zn at 0-20 cm soil depth, indicating that HM had significant inhibitory effects on AMF growth and soil properties, and that Pb exhibited greater toxicity than Zn at shallow layer of soil. Both the proportion of soil large macroaggregates (>2000 μm) and mean weight diameter (MWD) were positively correlated with GRSP, SOM and SOC at 0-20 cm soil depth (P < 0.05), proving the important contributions of GRSP, SOM and SOC for binding soil particles together into large macroaggregates and improving aggregate stability. Furthermore, MC and HLD had significantly positive correlation with GRSP, SOM and SOC, suggesting that AMF played an essential role in GRSP, SOM and SOC accumulation and subsequently influencing aggregate formation and particle-size distribution in HM polluted soils. Our study highlighted that the introduction of indigenous plant associated with AMF might be a successful biotechnological tool to assist the recovery of HM polluted soils, and that proper management practices should be developed to guarantee maximum benefits from plant-AMF symbiosis during ecological restoration.


SIRT6 coordinates with CHD4 to promote chromatin relaxation and DNA repair.

  • Tianyun Hou‎ et al.
  • Nucleic acids research‎
  • 2020‎

Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.


A Novel PZT Pump with Built-in Compliant Structures.

  • Qibo Bao‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

Different to the traditionally defined valved piezoelectric (PZT) pump and valveless PZT pump, two groups of PZT pumps with built-in compliant structures-with distances between the free ends of 0.2 mm (Group A) and 0 mm (Group B)-were designed, fabricated, and experimentally tested. This type of pump mainly contains a chamber 12 mm in diameter and 1.1 mm in height, a PZT vibrator, and two pairs of compliant structures arranged on the flowing channel. The flow-resistance differences between these two groups of PZT pumps were theoretically and experimentally verified. The relationships between the amplitude, applied voltage and frequency of the PZT vibrators were obtained experimentally, with results illustrating that the amplitude linearly and positively correlates with the voltage, while nonlinearly and negatively correlating to the frequency. The flow rate performance of these two groups was experimentally tested from 110⁻160 Vpp and 10⁻130 Hz. Results showed that the flow rate positively correlates to the voltage, and the optimum flow rate frequency centers around 90 Hz for Group A and 80 Hz for Group B, respectively. The flow rate performances of Group B were further measured from 60⁻100 Hz and 170⁻210 Vpp, and obtained optimal flow rates of 3.6 mL/min at 210 Vpp and 80 Hz when ignoring the siphon-caused backward flow rate. As the compliant structures are not prominently limited by the channel's size, and the pump can be minimized by Micro-electromechanical Systems (MEMS) processing methods, it is a suitable candidate for microfluidic applications like closed-loop cooling systems and drug delivery systems.


Exogenous Melatonin Application Enhances Rhizophagus irregularis Symbiosis and Induces the Antioxidant Response of Medicago truncatula Under Lead Stress.

  • Xiangyu Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Melatonin is a new kind of plant growth regulator. The aim of this study was to figure out the effect of melatonin on arbuscular mycorrhizal (AM) symbiosis and heavy metal tolerance. A three-factor experiment was conducted to determine the effect of melatonin application on the growth, AM symbiosis, and stress tolerance of Medicago truncatula. A two-factor (AM inoculation and Pb stress) experiment was conducted to determine the effect of AM fungus on melatonin accumulation under Pb stress. AM plants under Pb stress had a higher melatonin accumulation than non-mycorrhizal (NM) plants under Pb stress. Acetylserotonin methyltransferase (ASMT) is the enzymatic reaction of the last step in melatonin synthesis. The accumulation of melatonin may be related to the expression of MtASMT. Melatonin application increased the relative expression of MtPT4 and AM colonization in AM plants. Melatonin application decreased Pb uptake with and without AM inoculation. Both melatonin application and AM inoculation improved M. truncatula growth and increased antioxidant response with Pb stress. These results indicated that melatonin application has positive effects on AM symbiosis and Pb stress tolerance under Pb stress. AM inoculation improve melatonin synthesis capacity under Pb stress. Melatonin application may improve AM plant growth by enhancing AM symbiosis, stimulating antioxidant response, and inhibiting Pb uptake.


Fast analysis of scATAC-seq data using a predefined set of genomic regions.

  • Valentina Giansanti‎ et al.
  • F1000Research‎
  • 2020‎

Background: Analysis of scATAC-seq data has been recently scaled to thousands of cells. While processing of other types of single cell data was boosted by the implementation of alignment-free techniques, pipelines available to process scATAC-seq data still require large computational resources. We propose here an approach based on pseudoalignment, which reduces the execution times and hardware needs at little cost for precision. Methods: Public data for 10k PBMC were downloaded from 10x Genomics web site. Reads were aligned to various references derived from DNase I Hypersensitive Sites (DHS) using kallisto and quantified with bustools. We compared our results with the ones publicly available derived by cellranger-atac. We subsequently tested our approach on scATAC-seq data for K562 cell line. Results: We found that kallisto does not introduce biases in quantification of known peaks; cells groups identified are consistent with the ones identified from standard method. We also found that cell identification is robust when analysis is performed using DHS-derived reference in place of de novo identification of ATAC peaks. Lastly, we found that our approach is suitable for reliable quantification of gene activity based on scATAC-seq signal, thus allows for efficient labelling of cell groups based on marker genes. Conclusions: Analysis of scATAC-seq data by means of kallisto produces results in line with standard pipelines while being considerably faster; using a set of known DHS sites as reference does not affect the ability to characterize the cell populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: