Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 230 papers

The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

  • Gisella Figlioli‎ et al.
  • NPJ breast cancer‎
  • 2019‎

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors.


Polymorphisms in the Angiogenesis-Related Genes EFNB2, MMP2 and JAG1 Are Associated with Survival of Colorectal Cancer Patients.

  • Dominique Scherer‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

An individual's inherited genetic variation may contribute to the 'angiogenic switch', which is essential for blood supply and tumor growth of microscopic and macroscopic tumors. Polymorphisms in angiogenesis-related genes potentially predispose to colorectal cancer (CRC) or affect the survival of CRC patients. We investigated the association of 392 single nucleotide polymorphisms (SNPs) in 33 angiogenesis-related genes with CRC risk and survival of CRC patients in 1754 CRC cases and 1781 healthy controls within DACHS (Darmkrebs: Chancen der Verhütung durch Screening), a German population-based case-control study. Odds ratios and 95% confidence intervals (CI) were estimated from unconditional logistic regression to test for genetic associations with CRC risk. The Cox proportional hazard model was used to estimate hazard ratios (HR) and 95% CIs for survival. Multiple testing was adjusted for by a false discovery rate. No variant was associated with CRC risk. Variants in EFNB2, MMP2 and JAG1 were significantly associated with overall survival. The association of the EFNB2 tagging SNP rs9520090 (p < 0.0001) was confirmed in two validation datasets (p-values: 0.01 and 0.05). The associations of the tagging SNPs rs6040062 in JAG1 (p-value 0.0003) and rs2241145 in MMP2 (p-value 0.0005) showed the same direction of association with overall survival in the first and second validation sets, respectively, although they did not reach significance (p-values: 0.09 and 0.25, respectively). EFNB2, MMP2 and JAG1 are known for their functional role in angiogenesis and the present study points to novel evidence for the impact of angiogenesis-related genetic variants on the CRC outcome.


Impact of fibroblast growth factor receptor 1 (FGFR1) amplification on the prognosis of breast cancer patients.

  • Ramona Erber‎ et al.
  • Breast cancer research and treatment‎
  • 2020‎

Various aberrations in the fibroblast growth factor receptor genes FGFR1, FGFR2, and FGFR3 are found in different cancers, including breast cancer (BC). This study analyzed the impact of FGFR amplification on the BC prognosis.


A Post-Processing Algorithm for miRNA Microarray Data.

  • Stepan Nersisyan‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

One of the main disadvantages of using DNA microarrays for miRNA expression profiling is the inability of adequate comparison of expression values across different miRNAs. This leads to a large amount of miRNAs with high scores which are actually not expressed in examined samples, i.e., false positives. We propose a post-processing algorithm which performs scoring of miRNAs in the results of microarray analysis based on expression values, time of discovery of miRNA, and correlation level between the expressions of miRNA and corresponding pre-miRNA in considered samples. The algorithm was successfully validated by the comparison of the results of its application to miRNA microarray breast tumor samples with publicly available miRNA-seq breast tumor data. Additionally, we obtained possible reasons why miRNA can appear as a false positive in microarray study using paired miRNA sequencing and array data. The use of DNA microarrays for estimating miRNA expression profile is limited by several factors. One of them consists of problems with comparing expression values of different miRNAs. In this work, we show that situation can be significantly improved if some additional information is taken into consideration in a comparison.


Genetic Variation in ABCC4 and CFTR and Acute Pancreatitis during Treatment of Pediatric Acute Lymphoblastic Leukemia.

  • Thies Bartram‎ et al.
  • Journal of clinical medicine‎
  • 2021‎

Acute pancreatitis (AP) is a serious, mechanistically not entirely resolved side effect of L-asparaginase-containing treatment for acute lymphoblastic leukemia (ALL). To find new candidate variations for AP, we conducted a genome-wide association study (GWAS).


Common variants in breast cancer risk loci predispose to distinct tumor subtypes.

  • Thomas U Ahearn‎ et al.
  • Breast cancer research : BCR‎
  • 2022‎

Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear.


Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment.

  • Anna Morra‎ et al.
  • Breast cancer research : BCR‎
  • 2021‎

Given the high heterogeneity among breast tumors, associations between common germline genetic variants and survival that may exist within specific subgroups could go undetected in an unstratified set of breast cancer patients.


Germline variation of Ribonuclease H2 genes in ovarian cancer patients.

  • Rahel Polaczek‎ et al.
  • Journal of ovarian research‎
  • 2020‎

Epithelial ovarian carcinoma (EOC) is a genetically heterogeneous disease that is partly driven by molecular defects in mismatch repair (MMR) or homology-directed DNA repair (HDR). Ribonuclease H2 serves to remove mis-incorporated ribonucleotides from DNA which alleviates HDR mechanisms and guides the MMR machinery. Although Ribonuclease H2 has been implicated in cancer, the role of germline variants for ovarian cancer is unknown. In the present case-control study, we sequenced the coding and flanking untranslated regions of the RNASEH2A, RNASEH2B and RNASEH2C genes, encoding all three subunits of Ribonuclease H2, in a total of 602 German patients with EOC and of 940 healthy females from the same population. We identified one patient with a truncating variant in RNASEH2B, p.C44X, resulting in a premature stop codon. This patient had high-grade serous EOC with an 8 years survival after platinum/taxane-based therapy. Subsequent analysis of TCGA data similarly showed a significantly longer progression-free survival in ovarian cancer patients with low RNASEH2B or RNASEH2C expression levels. In conclusion, loss-of-function variants in Ribonuclease H2 genes are not common predisposing factors in ovarian cancer but the possibility that they modulate therapeutic platinum response deserves further investigation.


HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment.

  • Franziska M Wuerfel‎ et al.
  • Scientific reports‎
  • 2020‎

The immunosuppressive human leukocyte antigens HLA-G and HLA-F are expressed on trophoblast and malignant cells. Four membrane-bound and three soluble HLA-G protein isoforms have been described, which have different immunosuppressive potentials. HLA-F has three transcript variants, resulting in three different protein isoforms. The aim of this study was to evaluate the prognostic and predictive value of HLA-G and HLA-F protein isoform expression patterns in patients with breast cancer. Core biopsies were taken at diagnosis in patients with HER2+ (n = 28), luminal B-like (n = 49) and triple-negative (n = 38) breast cancers who received neoadjuvant chemotherapy. Expression levels of HLA-F and -G were correlated with the pathological complete response (pCR). Protein expression was determined by Western blot analysis, using two antibodies for each HLA, specific for different isoforms. The protein expression of HLA isoforms did not significantly differ between breast cancer subtypes. However, some initial indications were found for an association between the soluble HLA-G6 protein isoform and pCR in HER2+ breast cancer. The study provides preliminary evidence for the evaluation of HLA-G isoform expression, in particular HLA-G6, as a possible new marker for pCR in HER2+ breast cancer.


Multi-tissue transcriptome-wide association study identifies eight candidate genes and tissue-specific gene expression underlying endometrial cancer susceptibility.

  • Pik Fang Kho‎ et al.
  • Communications biology‎
  • 2021‎

Genome-wide association studies (GWAS) have revealed sixteen risk loci for endoemtrial cancer but the identification of candidate susceptibility genes remains challenging. Here, we perform transcriptome-wide association study (TWAS) analyses using the largest endometrial cancer GWAS and gene expression from six relevant tissues, prioritizing eight candidate endometrial cancer susceptibility genes, one of which (EEFSEC) is located at a potentially novel endometrial cancer risk locus. We also show evidence of biologically relevant tissue-specific expression associations for CYP19A1 (adipose), HEY2 (ovary) and SKAP1 (whole blood). A phenome-wide association study demonstrates associations of candidate susceptibility genes with anthropometric, cardiovascular, diabetes, bone health and sex hormone traits that are related to endometrial cancer risk factors. Lastly, analysis of TWAS data highlights candidate compounds for endometrial cancer repurposing. In summary, this study reveals endometrial cancer susceptibility genes, including those with evidence of tissue specificity, providing insights into endometrial cancer aetiology and avenues for therapeutic development.


Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element.

  • Joseph S Baxter‎ et al.
  • American journal of human genetics‎
  • 2021‎

A combination of genetic and functional approaches has identified three independent breast cancer risk loci at 2q35. A recent fine-scale mapping analysis to refine these associations resulted in 1 (signal 1), 5 (signal 2), and 42 (signal 3) credible causal variants at these loci. We used publicly available in silico DNase I and ChIP-seq data with in vitro reporter gene and CRISPR assays to annotate signals 2 and 3. We identified putative regulatory elements that enhanced cell-type-specific transcription from the IGFBP5 promoter at both signals (30- to 40-fold increased expression by the putative regulatory element at signal 2, 2- to 3-fold by the putative regulatory element at signal 3). We further identified one of the five credible causal variants at signal 2, a 1.4 kb deletion (esv3594306), as the likely causal variant; the deletion allele of this variant was associated with an average additional increase in IGFBP5 expression of 1.3-fold (MCF-7) and 2.2-fold (T-47D). We propose a model in which the deletion allele of esv3594306 juxtaposes two transcription factor binding regions (annotated by estrogen receptor alpha ChIP-seq peaks) to generate a single extended regulatory element. This regulatory element increases cell-type-specific expression of the tumor suppressor gene IGFBP5 and, thereby, reduces risk of estrogen receptor-positive breast cancer (odds ratio = 0.77, 95% CI 0.74-0.81, p = 3.1 × 10-31).


Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy.

  • Hannah Reimann‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2021‎

Therapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies.


Expression of neuroendocrine markers in different molecular subtypes of breast carcinoma.

  • David L Wachter‎ et al.
  • BioMed research international‎
  • 2014‎

Carcinomas of the breast with neuroendocrine features are incorporated in the World Health Organization classification since 2003 and include well-differentiated neuroendocrine tumors, poorly differentiated neuroendocrine carcinomas/small cell carcinomas, and invasive breast carcinomas with neuroendocrine differentiation. Neuroendocrine differentiation is known to be more common in certain low-grade histologic special types and has been shown to mainly cluster to the molecular (intrinsic) luminal A subtype.


Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression.

  • Hatef Darabi‎ et al.
  • American journal of human genetics‎
  • 2015‎

Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.


Common germline polymorphisms associated with breast cancer-specific survival.

  • Ailith Pirie‎ et al.
  • Breast cancer research : BCR‎
  • 2015‎

Previous studies have identified common germline variants nominally associated with breast cancer survival. These associations have not been widely replicated in further studies. The purpose of this study was to evaluate the association of previously reported SNPs with breast cancer-specific survival using data from a pooled analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association Consortium.


Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer.

  • Kyriaki Michailidou‎ et al.
  • Nature genetics‎
  • 2015‎

Genome-wide association studies (GWAS) and large-scale replication studies have identified common variants in 79 loci associated with breast cancer, explaining ∼14% of the familial risk of the disease. To identify new susceptibility loci, we performed a meta-analysis of 11 GWAS, comprising 15,748 breast cancer cases and 18,084 controls together with 46,785 cases and 42,892 controls from 41 studies genotyped on a 211,155-marker custom array (iCOGS). Analyses were restricted to women of European ancestry. We generated genotypes for more than 11 million SNPs by imputation using the 1000 Genomes Project reference panel, and we identified 15 new loci associated with breast cancer at P < 5 × 10(-8). Combining association analysis with ChIP-seq chromatin binding data in mammary cell lines and ChIA-PET chromatin interaction data from ENCODE, we identified likely target genes in two regions: SETBP1 at 18q12.3 and RNF115 and PDZK1 at 1q21.1. One association appears to be driven by an amino acid substitution encoded in EXO1.


Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1.

  • Timothy H T Cheng‎ et al.
  • Scientific reports‎
  • 2015‎

High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10(-9)) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10(-8)), with the alleles showing opposite effects on the risks of the two cancers.


Mutation analysis of BRCA1, BRCA2, PALB2 and BRD7 in a hospital-based series of German patients with triple-negative breast cancer.

  • Franziska Pern‎ et al.
  • PloS one‎
  • 2012‎

Triple-negative breast cancer (TNBC) is an aggressive form of breast carcinoma with a poor prognosis. Recent evidence suggests that some patients with TNBC harbour germ-line mutations in DNA repair genes which may render their tumours susceptible to novel therapies such as treatment with PARP inhibitors. In the present study, we have investigated a hospital-based series of 40 German patients with TNBC for the presence of germ-line mutations in BRCA1, BRCA2, PALB2, and BRD7 genes. Microfluidic array PCR and next-generation sequencing was used for BRCA1 and BRCA2 analysis while conventional high-resolution melting and Sanger sequencing was applied to study the coding regions of PALB2 and BRD7, respectively. Truncating mutations in BRCA1 were found in six patients, and truncating mutations in BRCA2 and PALB2 were detected in one patient each, whereas no truncating mutation was identified in BRD7. One patient was a double heterozygote for the PALB2 mutation, c.758insT, and a BRCA1 mutation, c.927delA. Our results confirm in a hospital-based setting that a substantial proportion of German TNBC patients (17.5%) harbour germ-line mutations in genes involved in homology-directed DNA repair, with a preponderance of BRCA1 mutations. Triple-negative breast cancer should be considered as an additional criterion for future genetic counselling and diagnostic sequencing.


Hereditary breast cancer: ever more pieces to the polygenic puzzle.

  • Natalia Bogdanova‎ et al.
  • Hereditary cancer in clinical practice‎
  • 2013‎

Several susceptibility genes differentially impact on the lifetime risk for breast cancer. Technological advances over the past years have enabled the detection of genetic risk factors through high-throughput screening of large breast cancer case-control series. High- to intermediate penetrance alleles have now been identified in more than 20 genes involved in DNA damage signalling and repair, and more than 70 low-penetrance loci have been discovered through recent genome-wide association studies. In addition to classical germ-line mutation and single-nucleotide polymorphism, copy number variation and somatic mosaicism have been proposed as potential predisposing mechanisms. Many of the identified loci also appear to influence breast tumour characteristics such as estrogen receptor status. In this review, we briefly summarize present knowledge about breast cancer susceptibility genes and discuss their implications for risk prediction and clinical practice.


Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer.

  • Hui Shen‎ et al.
  • Nature communications‎
  • 2013‎

HNF1B is overexpressed in clear cell epithelial ovarian cancer, and we observed epigenetic silencing in serous epithelial ovarian cancer, leading us to hypothesize that variation in this gene differentially associates with epithelial ovarian cancer risk according to histological subtype. Here we comprehensively map variation in HNF1B with respect to epithelial ovarian cancer risk and analyse DNA methylation and expression profiles across histological subtypes. Different single-nucleotide polymorphisms associate with invasive serous (rs7405776 odds ratio (OR)=1.13, P=3.1 × 10(-10)) and clear cell (rs11651755 OR=0.77, P=1.6 × 10(-8)) epithelial ovarian cancer. Risk alleles for the serous subtype associate with higher HNF1B-promoter methylation in these tumours. Unmethylated, expressed HNF1B, primarily present in clear cell tumours, coincides with a CpG island methylator phenotype affecting numerous other promoters throughout the genome. Different variants in HNF1B associate with risk of serous and clear cell epithelial ovarian cancer; DNA methylation and expression patterns are also notably distinct between these subtypes. These findings underscore distinct mechanisms driving different epithelial ovarian cancer histological subtypes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: