Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 140 papers

Single-cell sequencing techniques from individual to multiomics analyses.

  • Yukie Kashima‎ et al.
  • Experimental & molecular medicine‎
  • 2020‎

Here, we review single-cell sequencing techniques for individual and multiomics profiling in single cells. We mainly describe single-cell genomic, epigenomic, and transcriptomic methods, and examples of their applications. For the integration of multilayered data sets, such as the transcriptome data derived from single-cell RNA sequencing and chromatin accessibility data derived from single-cell ATAC-seq, there are several computational integration methods. We also describe single-cell experimental methods for the simultaneous measurement of two or more omics layers. We can achieve a detailed understanding of the basic molecular profiles and those associated with disease in each cell by utilizing a large number of single-cell sequencing techniques and the accumulated data sets.


DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of 'pan-negative'-type lung adenocarcinomas.

  • Kenichi Hamada‎ et al.
  • Carcinogenesis‎
  • 2021‎

Although some previous studies have examined epigenomic alterations in lung adenocarcinomas, correlations between epigenomic events and genomic driver mutations have not been fully elucidated. Single-CpG resolution genome-wide DNA methylation analysis with the Infinium HumanMethylation27 BeadChip was performed using 162 paired samples of adjacent normal lung tissue (N) and the corresponding tumorous tissue (T) from patients with lung adenocarcinomas. Correlations between DNA methylation data on the one hand and clinicopathological parameters and genomic driver mutations, i.e. mutations of EGFR, KRAS, BRAF and HER2 and fusions involving ALK, RET and ROS1, were examined. DNA methylation levels in 12 629 probes from N samples were significantly correlated with recurrence-free survival. Principal component analysis revealed that distinct DNA methylation profiles at the precancerous N stage tended not to induce specific genomic driver aberrations. Most of the genes showing significant DNA methylation alterations during transition from N to T were shared by two or more driver aberration groups. After small interfering RNA knockdown of ZNF132, which showed DNA hypermethylation only in the pan-negative group and was correlated with vascular invasion, the proliferation, apoptosis and migration of cancer cell lines were examined. ZNF132 knockdown led to increased cell migration ability, rather than increased cell growth or reduced apoptosis. We concluded that DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of 'pan-negative' lung adenocarcinomas. In addition, DNA methylation alterations at the precancerous stage may determine tumor aggressiveness, and such alterations that accumulate after driver mutation may additionally modify clinicopathological features through alterations of gene expression.


Long-read whole-genome methylation patterning using enzymatic base conversion and nanopore sequencing.

  • Yoshitaka Sakamoto‎ et al.
  • Nucleic acids research‎
  • 2021‎

Long-read whole-genome sequencing analysis of DNA methylation would provide useful information on the chromosomal context of gene expression regulation. Here we describe the development of a method that improves the read length generated by using the bisulfite-sequencing-based approach. In this method, we combined recently developed enzymatic base conversion, where an unmethylated cytosine (C) should be converted to thymine (T), with nanopore sequencing. After methylation-sensitive base conversion, the sequencing library was constructed using long-range polymerase chain reaction. This type of analysis is possible using a minimum of 1 ng genomic DNA, and an N50 read length of 3.4-7.6 kb is achieved. To analyze the produced data, which contained a substantial number of base mismatches due to sequence conversion and an inaccurate base read of the nanopore sequencing, a new analytical pipeline was constructed. To demonstrate the performance of long-read methylation sequencing, breast cancer cell lines and clinical specimens were subjected to analysis, which revealed the chromosomal methylation context of key cancer-related genes, allele-specific methylated genes, and repetitive or deletion regions. This method should convert the intractable specimens for which the amount of available genomic DNA is limited to the tractable targets.


Single-Cell Analyses Reveal Diverse Mechanisms of Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer.

  • Yukie Kashima‎ et al.
  • Cancer research‎
  • 2021‎

Tumor heterogeneity underlies resistance to tyrosine kinase inhibitors (TKI) in lung cancers harboring EGFR mutations. Previous evidence suggested that subsets of preexisting resistant cells are selected by EGFR-TKI treatment, or alternatively, that diverse acquired resistance mechanisms emerge from drug-tolerant persister (DTP) cells. Many studies have used bulk tumor specimens or subcloned resistant cell lines to identify resistance mechanism. However, intratumoral heterogeneity can result in divergent responses to therapies, requiring additional approaches to reveal the complete spectrum of resistance mechanisms. Using EGFR-TKI-resistant cell models and clinical specimens, we performed single-cell RNA-seq and single-cell ATAC-seq analyses to define the transcriptional and epigenetic landscape of parental cells, DTPs, and tumor cells in a fully resistant state. In addition to AURKA, VIM, and AXL, which are all known to induce EGFR-TKI resistance, CD74 was identified as a novel gene that plays a critical role in the drug-tolerant state. In vitro and in vivo experiments demonstrated that CD74 upregulation confers resistance to the EGFR-TKI osimertinib and blocks apoptosis, enabling tumor regrowth. Overall, this study provides new insight into the mechanisms underlying resistance to EGFR-TKIs. SIGNIFICANCE: Single-cell analyses identify diverse mechanisms of resistance as well as the state of tolerant cells that give rise to resistance to EGFR tyrosine kinase inhibitors.


MUSASHI-2 confers resistance to third-generation EGFR-tyrosine kinase inhibitor osimertinib in lung adenocarcinoma.

  • Reheman Yiming‎ et al.
  • Cancer science‎
  • 2021‎

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in patients with non-small-cell lung cancer (NSCLC) harboring EGFR mutations. However, due to acquired resistance to EGFR-TKIs, even patients on third-generation osimertinib have a poor prognosis. Resistance mechanisms are still not fully understood. Here, we demonstrate that the increased expression of MUSASHI-2 (MSI2), an RNA-binding protein, is a novel mechanism for resistance to EGFR-TKIs. We found that after a long-term exposure to gefitinib, the first-generation EGFR-TKI lung cancer cells harboring the EGFR-TKI-sensitive mutations became resistant to both gefitinib and osimertinib. Although other mutations in EGFR were not found, expression levels of Nanog, a stemness core protein, and activities of aldehyde dehydrogenase (ALDH) were increased, suggesting that cancer stem-like properties were increased. Transcriptome analysis revealed that MSI2 was among the stemness-related genes highly upregulated in EGFR-TKI-resistant cells. Knockdown of MSI2 reduced cancer stem-like properties, including the expression levels of Nanog, a core stemness factor. We demonstrated that knockdown of MSI2 restored sensitivity to osimertinib or gefitinib in EGFR-TKI-resistant cells to levels similar to those of parental cells in vitro. An RNA immunoprecipitation (RIP) assay revealed that antibodies against MSI2 were bound to Nanog mRNA, suggesting that MSI2 increases Nanog expression by binding to Nanog mRNA. Moreover, overexpression of MSI2 or Nanog conferred resistance to osimertinib or gefitinib in parental cells. Finally, MSI2 knockdown greatly increased the sensitivity to osimertinib in vivo. Collectively, our findings provide proof of principle that targeting the MSI2-Nanog axis in combination with EGFR-TKIs would effectively prevent the emergence of acquired resistance.


Chronological genome and single-cell transcriptome integration characterizes the evolutionary process of adult T cell leukemia-lymphoma.

  • Makoto Yamagishi‎ et al.
  • Nature communications‎
  • 2021‎

Subclonal genetic heterogeneity and their diverse gene expression impose serious problems in understanding the behavior of cancers and contemplating therapeutic strategies. Here we develop and utilize a capture-based sequencing panel, which covers host hotspot genes and the full-length genome of human T-cell leukemia virus type-1 (HTLV-1), to investigate the clonal architecture of adult T-cell leukemia-lymphoma (ATL). For chronologically collected specimens from patients with ATL or pre-onset individuals, we integrate deep DNA sequencing and single-cell RNA sequencing to detect the somatic mutations and virus directly and characterize the transcriptional readouts in respective subclones. Characteristic genomic and transcriptomic patterns are associated with subclonal expansion and switches during the clinical timeline. Multistep mutations in the T-cell receptor (TCR), STAT3, and NOTCH pathways establish clone-specific transcriptomic abnormalities and further accelerate their proliferative potential to develop highly malignant clones, leading to disease onset and progression. Early detection and characterization of newly expanded subclones through the integrative analytical platform will be valuable for the development of an in-depth understanding of this disease.


Expansion of Cancer Risk Profile for BRCA1 and BRCA2 Pathogenic Variants.

  • Yukihide Momozawa‎ et al.
  • JAMA oncology‎
  • 2022‎

The clinical importance of genetic testing of BRCA1 and BRCA2 in breast, ovarian, prostate, and pancreatic cancers is widely recognized. However, there is insufficient evidence to include other cancer types that are potentially associated with BRCA1 and BRCA2 in clinical management guidelines.


Spatial and single-cell transcriptome analysis reveals changes in gene expression in response to drug perturbation in rat kidney.

  • Naoki Onoda‎ et al.
  • DNA research : an international journal for rapid publication of reports on genes and genomes‎
  • 2022‎

The kidney is a complex organ that consists of various types of cells. It is occasionally difficult to resolve molecular alterations and possible perturbations that the kidney experiences due to drug-induced damage. In this study, we performed spatial and single-cell transcriptome analysis of rat kidneys and constructed a precise rat renal cell atlas with spatial information. Using the constructed catalogue, we were able to characterize cells of several minor populations, such as macula densa or juxtaglomerular cells. Further inspection of the spatial gene expression data allowed us to identify the upregulation of genes involved in the renin regulating pathway in losartan-treated populations. Losartan is an angiotensin II receptor antagonist drug, and the observed upregulation of the renin pathway-related genes could be due to feedback from the hypotensive action of the drug. Furthermore, we found spatial heterogeneity in the response to losartan among the glomeruli. These results collectively indicate that integrated single-cell and spatial gene expression analysis is a powerful approach to reveal the detailed associations between the different cell types spanning the complicated renal compartments.


Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis.

  • Chanbin Lee‎ et al.
  • Nature communications‎
  • 2022‎

Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.


Genome-wide association study of lung adenocarcinoma in East Asia and comparison with a European population.

  • Jianxin Shi‎ et al.
  • Nature communications‎
  • 2023‎

Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications.


Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (edition 2.1).

  • Yoichi Naito‎ et al.
  • International journal of clinical oncology‎
  • 2021‎

To promote precision oncology in clinical practice, the Japanese Society of Medical Oncology, the Japanese Society of Clinical Oncology, and the Japanese Cancer Association, jointly published "Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment" in 2017. Since new information on cancer genomic medicine has emerged since the 1st edition of the guidance was released, including reimbursement for NGS-based multiplex gene panel tests in 2019, the guidance revision was made.


Investigation of the Distribution and Content of Acetylcholine, a Novel Functional Compound in Eggplant.

  • Wenhao Wang‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2021‎

Eggplants are rich in acetylcholine (ACh), which can improve high blood pressure and negative psychological states. However, information on ACh content in individual parts of eggplant and the changes in ACh content during eggplant development is limited. Therefore, we investigated the ACh content in various parts of eggplant, namely, the leaf, root, bud, calyx, ovary, fruit, exocarp, mesocarp, partition, placenta, core, fruit base, fruit center, and fruit top in 26 eggplant varieties. Furthermore, the effect of heat treatment on ACh content was investigated. The ACh content significantly differed among the eggplant varieties. The difference between the varieties with the highest and lowest ACh content was 100-fold (Tosataka: 11 ± 0.61 mg/100 g fresh weight (FW) and Ryoma: 0.11 ± 0.046 mg/100 g FW, respectively). Eggplant fruit presented the highest ACh content (4.8 mg/100 g FW); it was three times higher than that in other parts combined (1.6 mg/100 g FW). The root contained the lowest ACh content among all parts. The ACh content increased with growth after flowering. The ACh content in the fruit 1.5 months after flowering was 400 times that in the ovary. ACh was uniformly distributed in eggplant flesh. Heat treatment did not cause ACh loss in eggplant. Thus, eggplant is an excellent raw material for functional foods.


Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa.

  • Ayako Suzuki‎ et al.
  • Scientific reports‎
  • 2020‎

The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.


Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer.

  • Miho Oka‎ et al.
  • Genome biology‎
  • 2021‎

Long-read sequencing of full-length cDNAs enables the detection of structures of aberrant splicing isoforms in cancer cells. These isoforms are occasionally translated, presented by HLA molecules, and recognized as neoantigens. This study used a long-read sequencer (MinION) to construct a comprehensive catalog of aberrant splicing isoforms in non-small-cell lung cancers, by which novel isoforms and potential neoantigens are identified.


Novel Calcium-Binding Ablating Mutations Induce Constitutive RET Activity and Drive Tumorigenesis.

  • Junya Tabata‎ et al.
  • Cancer research‎
  • 2022‎

Distinguishing oncogenic mutations from variants of unknown significance (VUS) is critical for precision cancer medicine. Here, computational modeling of 71,756 RET variants for positive selection together with functional assays of 110 representative variants identified a three-dimensional cluster of VUSs carried by multiple human cancers that cause amino acid substitutions in the calmodulin-like motif (CaLM) of RET. Molecular dynamics simulations indicated that CaLM mutations decrease interactions between Ca2+ and its surrounding residues and induce conformational distortion of the RET cysteine-rich domain containing the CaLM. RET-CaLM mutations caused ligand-independent constitutive activation of RET kinase by homodimerization mediated by illegitimate disulfide bond formation. RET-CaLM mutants possessed oncogenic and tumorigenic activities that could be suppressed by tyrosine kinase inhibitors targeting RET. This study identifies calcium-binding ablating mutations as a novel type of oncogenic mutation of RET and indicates that in silico-driven annotation of VUSs of druggable oncogenes is a promising strategy to identify targetable driver mutations.


Elderly aortic stenosis patients' perspectives on treatment goals in transcatheter aortic valvular replacement.

  • Kohei Sugiura‎ et al.
  • ESC heart failure‎
  • 2022‎

Transcatheter aortic valvular replacement (TAVR) is increasingly being performed for elderly patients with aortic stenosis (AS), and current guidelines acknowledge the importance of shared decision-making in their management. This study aimed to evaluate elderly symptomatic severe AS patients' perspectives on their treatment goals and identify factors that influence their treatment choice.


A Nucleolar Stress-Specific p53-miR-101 Molecular Circuit Functions as an Intrinsic Tumor-Suppressor Network.

  • Yuko Fujiwara‎ et al.
  • EBioMedicine‎
  • 2018‎

Activation of intrinsic p53 tumor-suppressor (TS) pathways is an important principle underlying cancer chemotherapy. It is necessary to elucidate the precise regulatory mechanisms of these networks to create new treatment strategies.


On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective.

  • Eizo Nakamura‎ et al.
  • Proceedings of the Japan Academy. Series B, Physical and biological sciences‎
  • 2022‎

Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.


Pulmonary artery pressure-perfusion relation during exercise in patients with chronic thromboembolic pulmonary hypertension using pulmonary arteriography and right-heart catheterization.

  • Ayumi Goda‎ et al.
  • International journal of cardiology. Heart & vasculature‎
  • 2023‎

In pulmonary hypertension (PH), pulmonary artery pressure (PAP) does not increase to pulmonary perfusion (PP) < 50%. During exercise, PAP may be increased even at PP > 50% for the early detection of PP disorders. The relationship between PP estimated by pulmonary angiography (PAG) and PAP was evaluated in patients with chronic thromboembolic PH (CTEPH) treated by balloon pulmonary angioplasty with near-normal PH.


Whole-genome sequencing reveals the molecular implications of the stepwise progression of lung adenocarcinoma.

  • Yasuhiko Haga‎ et al.
  • Nature communications‎
  • 2023‎

The mechanism underlying the development of tumors, particularly at early stages, still remains mostly elusive. Here, we report whole-genome long and short read sequencing analysis of 76 lung cancers, focusing on very early-stage lung adenocarcinomas such as adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma. The obtained data is further integrated with bulk and spatial transcriptomic data and epigenomic data. These analyses reveal key events in lung carcinogenesis. Minimal somatic mutations in pivotal driver mutations and essential proliferative factors are the only detectable somatic mutations in the very early-stage of AIS. These initial events are followed by copy number changes and global DNA hypomethylation. Particularly, drastic changes are initiated at the later AIS stage, i.e., in Noguchi type B tumors, wherein cancer cells are exposed to the surrounding microenvironment. This study sheds light on the pathogenesis of lung adenocarcinoma from integrated pathological and molecular viewpoints.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: