Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 151 papers

Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in TP53 wild-type Ewing sarcoma.

  • Björn Stolte‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

Ewing sarcoma is a pediatric cancer driven by EWS-ETS transcription factor fusion oncoproteins in an otherwise stable genomic background. The majority of tumors express wild-type TP53, and thus, therapies targeting the p53 pathway would benefit most patients. To discover targets specific for TP53 wild-type Ewing sarcoma, we used a genome-scale CRISPR-Cas9 screening approach and identified and validated MDM2, MDM4, USP7, and PPM1D as druggable dependencies. The stapled peptide inhibitor of MDM2 and MDM4, ATSP-7041, showed anti-tumor efficacy in vitro and in multiple mouse models. The USP7 inhibitor, P5091, and the Wip1/PPM1D inhibitor, GSK2830371, decreased the viability of Ewing sarcoma cells. The combination of ATSP-7041 with P5091, GSK2830371, and chemotherapeutic agents showed synergistic action on the p53 pathway. The effects of the inhibitors, including the specific USP7 inhibitor XL-188, were rescued by concurrent TP53 knockout, highlighting the essentiality of intact p53 for the observed cytotoxic activities.


Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

  • Joshua Pan‎ et al.
  • Cell systems‎
  • 2018‎

Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states.


Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry.

  • Adam D Durbin‎ et al.
  • Nature genetics‎
  • 2018‎

Childhood high-risk neuroblastomas with MYCN gene amplification are difficult to treat effectively1. This has focused attention on tumor-specific gene dependencies that underlie tumorigenesis and thus provide valuable targets for the development of novel therapeutics. Using unbiased genome-scale CRISPR-Cas9 approaches to detect genes involved in tumor cell growth and survival2-6, we identified 147 candidate gene dependencies selective for MYCN-amplified neuroblastoma cell lines, compared to over 300 other human cancer cell lines. We then used genome-wide chromatin-immunoprecipitation coupled to high-throughput sequencing analysis to demonstrate that a small number of essential transcription factors-MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2-are members of the transcriptional core regulatory circuitry (CRC) that maintains cell state in MYCN-amplified neuroblastoma. To disable the CRC, we tested a combination of BRD4 and CDK7 inhibitors, which act synergistically, in vitro and in vivo, with rapid downregulation of CRC transcription factor gene expression. This study defines a set of critical dependency genes in MYCN-amplified neuroblastoma that are essential for cell state and survival in this tumor.


Reduced life- and healthspan in mice carrying a mono-allelic BubR1 MVA mutation.

  • Tobias Wijshake‎ et al.
  • PLoS genetics‎
  • 2012‎

Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1(+/GTTA) mice are significantly reduced. Furthermore, BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1(+/GTTA) mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.


Reduced expression of ribosomal proteins relieves microRNA-mediated repression.

  • Maja M Janas‎ et al.
  • Molecular cell‎
  • 2012‎

MicroRNAs (miRNAs) regulate physiological and pathological processes by inducing posttranscriptional repression of target messenger RNAs (mRNAs) via incompletely understood mechanisms. To discover factors required for human miRNA activity, we performed an RNAi screen using a reporter cell line of miRNA-mediated repression of translation initiation. We report that reduced expression of ribosomal protein genes (RPGs) dissociated miRNA complexes from target mRNAs, leading to increased polysome association, translation, and stability of miRNA-targeted mRNAs relative to untargeted mRNAs. RNA sequencing of polysomes indicated substantial overlap in sets of genes exhibiting increased or decreased polysomal association after Argonaute or RPG knockdowns, suggesting similarity in affected pathways. miRNA profiling of monosomes and polysomes demonstrated that miRNAs cosediment with ribosomes. RPG knockdowns decreased miRNAs in monosomes and increased their target mRNAs in polysomes. Our data show that most miRNAs repress translation and that the levels of RPGs modulate miRNA-mediated repression of translation initiation.


The landscape of somatic copy-number alteration across human cancers.

  • Rameen Beroukhim‎ et al.
  • Nature‎
  • 2010‎

A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-kappaBeta pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.


Control of cyclin D1 and breast tumorigenesis by the EglN2 prolyl hydroxylase.

  • Qing Zhang‎ et al.
  • Cancer cell‎
  • 2009‎

2-Oxoglutarate-dependent dioxygenases, including the EglN prolyl hydroxylases that regulate HIF, can be inhibited with drug-like molecules. EglN2 is estrogen inducible in breast carcinoma cells and the lone Drosophila EglN interacts genetically with Cyclin D1. Although EglN2 is a nonessential gene, we found that EglN2 inactivation decreases Cyclin D1 levels and suppresses mammary gland proliferation in vivo. Regulation of Cyclin D1 is a specific attribute of EglN2 among the EglN proteins and is HIF independent. Loss of EglN2 catalytic activity inhibits estrogen-dependent breast cancer tumorigenesis and can be rescued by exogenous Cyclin D1. EglN2 depletion also impairs the fitness of lung, brain, and hematopoietic cancer lines. These findings support the exploration of EglN2 inhibitors as therapeutics for estrogen-dependent breast cancer and other malignancies.


Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death.

  • Eduardo Balsa‎ et al.
  • Nature communications‎
  • 2020‎

Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.


Optimization of AsCas12a for combinatorial genetic screens in human cells.

  • Peter C DeWeirdt‎ et al.
  • Nature biotechnology‎
  • 2021‎

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.


Genome-wide CRISPR screen reveals host genes that regulate SARS-CoV-2 infection.

  • Jin Wei‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-β signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.


A genetic screen identifies a protective type III interferon response to Cryptosporidium that requires TLR3 dependent recognition.

  • Alexis R Gibson‎ et al.
  • PLoS pathogens‎
  • 2022‎

Cryptosporidium is a leading cause of severe diarrhea and diarrheal-related death in children worldwide. As an obligate intracellular parasite, Cryptosporidium relies on intestinal epithelial cells to provide a niche for its growth and survival, but little is known about the contributions that the infected cell makes to this relationship. Here we conducted a genome wide CRISPR/Cas9 knockout screen to discover host genes that influence Cryptosporidium parvum infection and/or host cell survival. Gene enrichment analysis indicated that the host interferon response, glycosaminoglycan (GAG) and glycosylphosphatidylinositol (GPI) anchor biosynthesis are important determinants of susceptibility to C. parvum infection and impact on the viability of host cells in the context of parasite infection. Several of these pathways are linked to parasite attachment and invasion and C-type lectins on the surface of the parasite. Evaluation of transcript and protein induction of innate interferons revealed a pronounced type III interferon response to Cryptosporidium in human cells as well as in mice. Treatment of mice with IFNλ reduced infection burden and protected immunocompromised mice from severe outcomes including death, with effects that required STAT1 signaling in the enterocyte. Initiation of this type III interferon response was dependent on sustained intracellular growth and mediated by the pattern recognition receptor TLR3. We conclude that host cell intrinsic recognition of Cryptosporidium results in IFNλ production critical to early protection against this infection.


Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability.

  • Brenton R Paolella‎ et al.
  • eLife‎
  • 2017‎

Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency.


In vivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma.

  • Juan Dubrot‎ et al.
  • Immunity‎
  • 2021‎

CRISPR-Cas9 genome engineering has increased the pace of discovery for immunology and cancer biology, revealing potential therapeutic targets and providing insight into mechanisms underlying resistance to immunotherapy. However, endogenous immune recognition of Cas9 has limited the applicability of CRISPR technologies in vivo. Here, we characterized immune responses against Cas9 and other expressed CRISPR vector components that cause antigen-specific tumor rejection in several mouse cancer models. To avoid unwanted immune recognition, we designed a lentiviral vector system that allowed selective CRISPR antigen removal (SCAR) from tumor cells. The SCAR system reversed immune-mediated rejection of CRISPR-modified tumor cells in vivo and enabled high-throughput genetic screens in previously intractable models. A pooled in vivo screen using SCAR in a CRISPR-antigen-sensitive renal cell carcinoma revealed resistance pathways associated with autophagy and major histocompatibility complex class I (MHC class I) expression. Thus, SCAR presents a resource that enables CRISPR-based studies of tumor-immune interactions and prevents unwanted immune recognition of genetically engineered cells, with implications for clinical applications.


Integrated cross-study datasets of genetic dependencies in cancer.

  • Clare Pacini‎ et al.
  • Nature communications‎
  • 2021‎

CRISPR-Cas9 viability screens are increasingly performed at a genome-wide scale across large panels of cell lines to identify new therapeutic targets for precision cancer therapy. Integrating the datasets resulting from these studies is necessary to adequately represent the heterogeneity of human cancers and to assemble a comprehensive map of cancer genetic vulnerabilities. Here, we integrated the two largest public independent CRISPR-Cas9 screens performed to date (at the Broad and Sanger institutes) by assessing, comparing, and selecting methods for correcting biases due to heterogeneous single-guide RNA efficiency, gene-independent responses to CRISPR-Cas9 targeting originated from copy number alterations, and experimental batch effects. Our integrated datasets recapitulate findings from the individual datasets, provide greater statistical power to cancer- and subtype-specific analyses, unveil additional biomarkers of gene dependency, and improve the detection of common essential genes. We provide the largest integrated resources of CRISPR-Cas9 screens to date and the basis for harmonizing existing and future functional genetics datasets.


Genetic screens in isogenic mammalian cell lines without single cell cloning.

  • Peter C DeWeirdt‎ et al.
  • Nature communications‎
  • 2020‎

Isogenic pairs of cell lines, which differ by a single genetic modification, are powerful tools for understanding gene function. Generating such pairs of mammalian cells, however, is labor-intensive, time-consuming, and, in some cell types, essentially impossible. Here, we present an approach to create isogenic pairs of cells that avoids single cell cloning, and screen these pairs with genome-wide CRISPR-Cas9 libraries to generate genetic interaction maps. We query the anti-apoptotic genes BCL2L1 and MCL1, and the DNA damage repair gene PARP1, identifying both expected and uncharacterized buffering and synthetic lethal interactions. Additionally, we compare acute CRISPR-based knockout, single cell clones, and small-molecule inhibition. We observe that, while the approaches provide largely overlapping information, differences emerge, highlighting an important consideration when employing genetic screens to identify and characterize potential drug targets. We anticipate that this methodology will be broadly useful to comprehensively study gene function across many contexts.


Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival.

  • Riaz Gillani‎ et al.
  • Cancer research‎
  • 2021‎

Gene fusions frequently result from rearrangements in cancer genomes. In many instances, gene fusions play an important role in oncogenesis; in other instances, they are thought to be passenger events. Although regulatory element rearrangements and copy number alterations resulting from these structural variants are known to lead to transcriptional dysregulation across cancers, the extent to which these events result in functional dependencies with an impact on cancer cell survival is variable. Here we used CRISPR-Cas9 dependency screens to evaluate the fitness impact of 3,277 fusions across 645 cell lines from the Cancer Dependency Map. We found that 35% of cell lines harbored either a fusion partner dependency or a collateral dependency on a gene within the same topologically associating domain as a fusion partner. Fusion-associated dependencies revealed numerous novel oncogenic drivers and clinically translatable alterations. Broadly, fusions can result in partner and collateral dependencies that have biological and clinical relevance across cancer types. SIGNIFICANCE: This study provides insights into how fusions contribute to fitness in different cancer contexts beyond partner-gene activation events, identifying partner and collateral dependencies that may have direct implications for clinical care.


Synthetic Lethal Interaction of SHOC2 Depletion with MEK Inhibition in RAS-Driven Cancers.

  • Rita Sulahian‎ et al.
  • Cell reports‎
  • 2019‎

The mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level. Multiple members of receptor tyrosine kinase (RTK)-RAS-MAPK pathways scored as sensitizers to MEKi. In particular, we demonstrate that knockout, suppression, or degradation of SHOC2, a positive regulator of MAPK signaling, specifically cooperated with MEK inhibition to impair proliferation in RAS-driven cancer cells. The depletion of SHOC2 disrupted survival pathways triggered by feedback RTK signaling in response to MEK inhibition. Thus, these findings nominate SHOC2 as a potential target for combination therapy.


(R)-2-Hydroxyglutarate Inhibits KDM5 Histone Lysine Demethylases to Drive Transformation in IDH-Mutant Cancers.

  • Kathryn Gunn‎ et al.
  • Cancer discovery‎
  • 2023‎

Oncogenic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in a wide range of cancers, including acute myeloid leukemia (AML) and glioma. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG], an oncometabolite that is hypothesized to promote cellular transformation by dysregulating 2OG-dependent enzymes. The only (R)-2HG target that has been convincingly shown to contribute to transformation by mutant IDH is the myeloid tumor suppressor TET2. However, there is ample evidence to suggest that (R)-2HG has other functionally relevant targets in IDH-mutant cancers. Here, we show that (R)-2HG inhibits KDM5 histone lysine demethylases and that this inhibition contributes to cellular transformation in IDH-mutant AML and IDH-mutant glioma. These studies provide the first evidence of a functional link between dysregulation of histone lysine methylation and transformation in IDH-mutant cancers.


Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal.

  • J Michael Krill-Burger‎ et al.
  • Genome biology‎
  • 2023‎

Hundreds of functional genomic screens have been performed across a diverse set of cancer contexts, as part of efforts such as the Cancer Dependency Map, to identify gene dependencies-genes whose loss of function reduces cell viability or fitness. Recently, large-scale screening efforts have shifted from RNAi to CRISPR-Cas9, due to superior efficacy and specificity. However, many effective oncology drugs only partially inhibit their protein targets, leading us to question whether partial suppression of genes using RNAi could reveal cancer vulnerabilities that are missed by complete knockout using CRISPR-Cas9. Here, we compare CRISPR-Cas9 and RNAi dependency profiles of genes across approximately 400 matched cancer cell lines.


Modular vector assembly enables rapid assessment of emerging CRISPR technologies.

  • Abby V McGee‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The diversity of CRISPR systems, coupled with scientific ingenuity, has led to an explosion of applications; however, to test newly-described innovations in their model systems, researchers typically embark on cumbersome, one-off cloning projects to generate custom reagents that are optimized for their biological questions. Here, we leverage Golden Gate cloning to create the Fragmid toolkit, a modular set of CRISPR cassettes and delivery technologies, along with a web portal, resulting in a combinatorial platform that enables scalable vector assembly within days. We further demonstrate that multiple CRISPR technologies can be assessed in parallel in a pooled screening format using this resource, enabling the rapid optimization of both novel technologies and cellular models. These results establish Fragmid as a robust system for the rapid design of CRISPR vectors, and we anticipate that this assembly approach will be broadly useful for systematic development, comparison, and dissemination of CRISPR technologies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: