Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 76 papers

The impact of wavelengths of LED light-therapy on endothelial cells.

  • Sabrina Rohringer‎ et al.
  • Scientific reports‎
  • 2017‎

Low level light therapy receives increasing interest in the fields of tissue regeneration and wound healing. Several in vivo studies demonstrated the positive effects of LLLT on angiogenesis. This study aimed to investigate the underlying properties in vitro by comparing the effects of light therapy by light emitting diodes of different wavelengths on endothelial cells in vitro. Human umbilical vein endothelial cells were treated with either 475 nm, 516 nm or 635 nm light. Control cells were not illuminated. 2D proliferation was quantified by manual counting. HUVEC migration was analyzed by performing a 2D wound scratch assay and a 3D bead assay. The influence of LLLT on early vasculogenic events was determined in a 3D fibrin co-culture model with adipose-derived stem cells. Stimulation with both red and green pulsed LED light significantly increased HUVEC proliferation and 3D migration. Moreover, HUVEC showed increased 2D migration potential with green light stimulation. The treatment with blue light was ineffective. Several parameters showed that green light was even more potent to stimulate proliferation and migration of endothelial cells than clinically well-established red light therapy. Further studies have to focus on intracellular mechanisms induced by different wavelengths in order to optimize this promising therapy in tissue regeneration.


A novel experimental rat model of peripheral nerve scarring that reliably mimics post-surgical complications and recurring adhesions.

  • Angela Lemke‎ et al.
  • Disease models & mechanisms‎
  • 2017‎

Inflammation, fibrosis and perineural adhesions with the surrounding tissue are common pathological processes following nerve injury and surgical interventions on peripheral nerves in human patients. These features can reoccur following external neurolysis, currently the most common surgical treatment for peripheral nerve scarring, thus leading to renewed nerve function impairment and chronic pain. To enable a successful evaluation of new therapeutic approaches, it is crucial to use a reproducible animal model that mimics the main clinical symptoms occurring in human patients. However, a clinically relevant model combining both histological and functional alterations has not been published to date. We therefore developed a reliable rat model that exhibits the essential pathological processes of peripheral nerve scarring. In our study, we present a novel method for the induction of nerve scarring by applying glutaraldehyde-containing glue that is known to cause nerve injury in humans. After a 3-week contact period with the sciatic nerve in female Sprague Dawley rats, we could demonstrate severe intra- and perineural scarring that resulted in grade 3 adhesions and major impairments in the electrophysiological peak amplitude compared with sham control (P=0.0478). Immunohistochemical analysis of the nerve structure revealed vigorous nerve inflammation and recruitment of T cells and macrophages. Also, distinct nerve degeneration was determined by immunostaining. These pathological alterations were further reflected in significant functional deficiencies, as determined by the analysis of relevant gait parameters as well as the quantification of the sciatic functional index starting at week 1 post-operation (P<0.01). Moreover, with this model we could, for the first time, demonstrate not only the primary formation, but also the recurrence, of severe adhesions 1 week after glue removal, imitating a major clinical challenge. As a comparison, we tested a published model for generating perineural fibrotic adhesions, which did not result in significant pathological changes. Taken together, we established an easily reproducible and reliable rat model for peripheral nerve scarring that allows for the effective testing of new therapeutic strategies.


Human amniotic membrane as newly identified source of amniotic fluid pulmonary surfactant.

  • Angela Lemke‎ et al.
  • Scientific reports‎
  • 2017‎

Pulmonary surfactant (PS) reduces surface tension at the air-liquid interface in the alveolar epithelium of the lung, which is required for breathing and for the pulmonary maturity of the developing foetus. However, the origin of PS had never been thoroughly investigated, although it was assumed to be secreted from the foetal developing lung. Human amniotic membrane (hAM), particularly its epithelial cell layer, composes the amniotic sac enclosing the amniotic fluid. In this study, we therefore aimed to investigate a potential contribution of the cellular components of the hAM to pulmonary surfactant found in amniotic fluid. We identified that cells within the native membrane contain lamellar bodies and express all four surfactant proteins as well as ABCA3. Lipidomic profiling by nanoESI - MS/MS revealed the presence of the essential lipid species as found in PS. Also, the biophysical activity of conditioned cell culture supernatant obtained from hAM was tested with captive bubble surfactometry. hAM supernatant showed the ability to reduce surface tension, similar to human PS obtained from bronchoalveolar lavage. This means that hAM produces the essential PS-associated components and can therefore contribute as second potential source of PS in amniotic fluid aside from the foetal lung.


Longitudinal Changes of Circulating miRNAs During Bisphosphonate and Teriparatide Treatment in an Animal Model of Postmenopausal Osteoporosis.

  • Moritz Weigl‎ et al.
  • Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research‎
  • 2021‎

MicroRNAs regulate bone homeostasis, and circulating microRNAs have been proposed as novel bone biomarkers. The effect of anti-osteoporotic treatment on circulating microRNAs has not been described in detail. Therefore, we performed a comprehensive analysis of microRNA serum levels in ovariectomized (OVX) and sham-operated (SHAM) rats over 12 weeks of antiresorptive or osteoanabolic treatment. Forty-two Sprague Dawley rats underwent SHAM surgery (n = 10) or ovariectomy (n = 32). After 8 weeks, OVX rats were randomized to antiresorptive treatment with zoledronate (n = 11), osteoanabolic treatment with teriparatide (n = 11), or vehicle treatment (n = 10). Serum samples were collected at weeks 8, 12, 16, and 20 after surgery. A total of 91 microRNAs were analyzed by RT-qPCR in serum samples collected at week 20. Based on the results, 29 microRNAs were selected for longitudinal analysis at all four study time points. Changes in bone mineral density and microstructure were followed up by in vivo micro-CT and ex vivo nano-CT. Ovariectomy resulted in the loss of trabecular bone, which was reversed by osteoanabolic and antiresorptive treatment. Differential expression analysis identified 11 circulating miRNAs that were significantly regulated after treatment. For example, miR-107 and miR-31-5p increased in vehicle-treated OVX animals, whereas they decreased during teriparatide treatment. Additional miRNAs were identified that showed significant correlations to bone microstructure or bone miRNA expression, including miR-203a-3p, which exhibited a significant negative correlation to vertebral and tibial trabecular bone volume fraction (%). Longitudinal analysis confirmed eight microRNAs with significant changes in serum over time that were prevented by teriparatide and zoledronate treatment (miR-34a-5p, miR-31-5p, miR-30d-3p, miR-378a-5p) or teriparatide treatment only (miR-375-3p, miR-183-5p, miR-203a-3p, miR-203b-3p). Gene target network analysis identified WNT and Notch signaling as the main signaling pathways controlled by these miRNAs. Thus, ovariectomy results in time-dependent deregulation of circulating miRNAs compared with SHAM animals. Anti-osteoporotic treatments can rescue this effect, showing that bone-related miRNAs might act as novel biomarkers for treatment monitoring. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat.

  • David Hercher‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2019‎

To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central - peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.


Risk Factors for Rotator Cuff Disease: An Experimental Study on Intact Human Subscapularis Tendons.

  • Fabian Plachel‎ et al.
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society‎
  • 2020‎

Although several studies revealed a multifactorial pathogenesis of degenerative rotator cuff disorders, the impact and interaction of extrinsic variables is still poorly understood. Thus, this study aimed at uncovering the effect of patient- and pathology-specific risk factors that may contribute to degeneration of the rotator cuff tendons. Between 2015 and 2018, 54 patients who underwent arthroscopic shoulder surgery at three specialized shoulder clinics were prospectively included. Using tendon samples harvested from the macroscopically intact subscapularis (SSC) tendon, targeted messenger RNA expression profile analysis was performed in the first cohort (n = 38). Furthermore, histological analyses were conducted on tendon tissue samples obtained from a second cohort (n = 16). Overall, both study cohorts were comparable concerning patient demographics. Results were then analyzed with respect to specific extrinsic factors, such as patient age, body mass index, current as well as previous professions and sport activities, smoking habit, and systemic metabolic diseases. While patient age, sports-activity level, and preexisting rotator cuff lesions were considered to contribute most strongly to tendinopathogenesis, no further coherences were found. With regards to gene expression analysis, change in expression correlated most strongly with patient age and severity of the rotator cuff pathology. Further, chronic disorders increased overall gene expression variation. Taken together, our study provides further evidence that tendon degeneration is the consequence of a multifactorial process and pathological changes of the supraspinatus tendon affect the quality of SSC tendon and most likely vice versa. Therefore, the rotator cuff tendons need to be considered as a unit when managing rotator cuff pathologies. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society J Orthop Res 38:182-191, 2020.


SVF-derived extracellular vesicles carry characteristic miRNAs in lipedema.

  • Eleni Priglinger‎ et al.
  • Scientific reports‎
  • 2020‎

Lipedema is a chronic, progressive disease of adipose tissue with lack of consistent diagnostic criteria. The aim of this study was a thorough comparative characterization of extracellular microRNAs (miRNAs) from the stromal vascular fraction (SVF) of healthy and lipedema adipose tissue. For this, we analyzed 187 extracellular miRNAs in concentrated conditioned medium (cCM) and specifically in small extracellular vesicles (sEVs) enriched thereof by size exclusion chromatography. No significant difference in median particle size and concentration was observed between sEV fractions in healthy and lipedema. We found the majority of miRNAs located predominantly in cCM compared to sEV enriched fraction. Surprisingly, hierarchical clustering of the most variant miRNAs showed that only sEVmiRNA profiles - but not cCMmiRNAs - were impacted by lipedema. Seven sEVmiRNAs (miR-16-5p, miR-29a-3p, miR-24-3p, miR-454-p, miR-144-5p, miR-130a-3p, let-7c-5p) were differently regulated in lipedema and healthy individuals, whereas only one cCMmiRNA (miR-188-5p) was significantly downregulated in lipedema. Comparing SVF from healthy and lipedema patients, we identified sEVs as the lipedema relevant miRNA fraction. This study contributes to identify the potential role of SVF secreted miRNAs in lipedema.


Development of a Metaphyseal Non-Union Model in the Osteoporotic Rat Femur.

  • Amelie Deluca‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2023‎

The aim of this current study was to establish a metaphyseal femoral non-union model in osteoporotic rats by comparing a power tool versus a manual tool for fracture creation. Twelve adult female Sprague Dawley rats were ovariectomized (OVX) and received a special diet for 6 weeks. Biweekly pQCT measurements confirmed a significant reduction in the cancellous and total bone mineral density in OVX rats compared to control (CTRL) animals. After 6 weeks, OVX rats underwent surgery creating a distal metaphyseal osteotomy, either using a piezoelectric- (n = 6) or a manual Gigli wire (n = 6) saw. Fractures were stabilized with a Y-shaped mini-locking plate. Within each group, three rats received Alginate directly into the fracture gap. OVX animals gained more weight over 8 weeks compared to CTRL animals. pQCT analysis showed a significant difference in the volumetric cancellous bone mineral density between OVX and CTRL rats. A histological examination of the osteoporotic phenotype was completed. Radiographic evaluation and Masson-Goldner trichrome staining with the piezoelectric saw failed to demonstrate bony bridging or a callus formation. New bone formation and complete healing were seen after 6 weeks in the Gigli group. For the creation of a metaphyseal atrophic non-union in the osteoporotic bone, a piezoelectric saw should be used.


Ischemia Impaired Wound Healing Model in the Rat-Demonstrating Its Ability to Test Proangiogenic Factors.

  • Anna T Hofmann‎ et al.
  • Biomedicines‎
  • 2023‎

Chronic wounds remain a serious clinical problem with insufficient therapeutic approaches. In this study we investigated the dose dependency of rhVEGF165 in fibrin sealant in both ischemic and non-ischemic excision wounds using our recently developed impaired-wound healing model. An abdominal flap was harvested from the rat with unilateral ligation of the epigastric bundle and consequent unilateral flap ischemia. Two excisional wounds were set in the ischemic and non-ischemic area. Wounds were treated with three different rhVEGF165 doses (10, 50 and 100 ng) mixed with fibrin or fibrin alone. Control animals received no therapy. Laser Doppler imaging (LDI) and immunohistochemistry were performed to verify ischemia and angiogenesis. Wound size was monitored with computed planimetric analysis. LDI revealed insufficient tissue perfusion in all groups. Planimetric analysis showed slower wound healing in the ischemic area in all groups. Wound healing was fastest with fibrin treatment-irrespective of tissue vitality. Lower dose VEGF (10 and 50 ng) led to faster wound healing compared to high-dose VEGF. Immunohistochemistry showed the highest vessel numbers in low-dose VEGF groups. In our previously established model, different rhVEGF165 treatments led to dose-dependent differences in angiogenesis and wound healing, but the fastest wound closure was achieved with fibrin matrix alone.


Paracrine Factors from Irradiated Peripheral Blood Mononuclear Cells Improve Skin Regeneration and Angiogenesis in a Porcine Burn Model.

  • Stefan Hacker‎ et al.
  • Scientific reports‎
  • 2016‎

Burn wounds pose a serious threat to patients and often require surgical treatment. Skin grafting aims to achieve wound closure but requires a well-vascularized wound bed. The secretome of peripheral blood mononuclear cells (PBMCs) has been shown to improve wound healing and angiogenesis. We hypothesized that topical application of the PBMC secretome would improve the quality of regenerating skin, increase angiogenesis, and reduce scar formation after burn injury and skin grafting in a porcine model. Full-thickness burn injuries were created on the back of female pigs. Necrotic areas were excised and the wounds were covered with split-thickness mesh skin grafts. Wounds were treated repeatedly with either the secretome of cultured PBMCs (Sec(PBMC)), apoptotic PBMCs (Apo-Sec(PBMC)), or controls. The wounds treated with Apo-Sec(PBMC) had an increased epidermal thickness, higher number of rete ridges, and more advanced epidermal differentiation than controls. The samples treated with Apo-Sec(PBMC) had a two-fold increase in CD31+ cells, indicating more angiogenesis. These data suggest that the repeated application of Apo-Sec(PBMC) significantly improves epidermal thickness, angiogenesis, and skin quality in a porcine model of burn injury and skin grafting.


A biocompatible macromolecular two-photon initiator based on hyaluronan.

  • Maximilian Tromayer‎ et al.
  • Polymer chemistry‎
  • 2017‎

The possibility of the direct encapsulation of living cells via two-photon induced photopolymerization enables the microfabrication of hydrogel scaffolds with high initial cell loadings and intimate matrix-cell contact. While highly efficient water-soluble two-photon initiators based on benzylidene ketone dyes have been developed, they exhibit considerable cyto- and phototoxicity. To address the problem of photoinitiator migration from the extracellular matrix into the cytosol, a two-photon initiator bound to a polymeric hyaluronan backbone (HAPI) was synthesized in this work. HAPI exhibited a distinct improvement of cytocompatibility compared to a reference two-photon initiator. Basic photophysical investigations were performed to characterize the absorption and fluorescence behavior of HAPI. Laser scanning microscopy was used to visualize and confirm the hindered transmembrane migration behavior of HAPI. The performance of HAPI was tested in two-photon polymerization at exceedingly high printing speeds of 100 mm s-1 producing gelatin-based complex 3D hydrogel scaffolds with a water content of 85%. The photodamage of the structuring process was low and viable MC3T3 cells embedded in the gel were monitored for several days after structuring.


The role of microRNAs in cellular senescence and age-related conditions of cartilage and bone.

  • Sylvia Weilner‎ et al.
  • Acta orthopaedica‎
  • 2015‎

We reviewed the current state of research on microRNAs in age-related diseases in cartilage and bone.


Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination.

  • Francisco J Rivera‎ et al.
  • Glia‎
  • 2019‎

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.


Physical stimulation by REAC and BMP4/WNT-1 inhibitor synergistically enhance cardiogenic commitment in iPSCs.

  • Valentina Basoli‎ et al.
  • PloS one‎
  • 2019‎

It is currently known that pluripotent stem cells can be committed in vitro to the cardiac lineage by the modulation of specific signaling pathways, but it is also well known that, despite the significant increase in cardiomyocyte yield provided by the currently available conditioned media, the resulting cardiogenic commitment remains a highly variable process. Previous studies provided evidence that radio electric fields asymmetrically conveyed through the Radio Electric Asymmetric Conveyer (REAC) technology are able to commit R1 embryonic stem cells and human adipose derived stem cells toward a cardiac phenotype. The present study aimed at investigating whether the effect of physical stimulation by REAC in combination with specific chemical inductors enhance the cardiogenic potential in human induced pluripotent stem cells (iPSCs). The appearance of a cardiac-like phenotype in iPSCs cultured in the presence of a cardiogenic medium, based upon BMP4 and a WNT-inhibitor, was consistently increased by REAC treatment used only during the early fate differentiation for the first 72 hours. REAC-exposed iPSCs exhibited an upregulation in the expression of specific cardiogenic transcripts and morphologically in the number of beating clusters, as compared to cells cultured in the cardiogenic medium alone. Our results indicate that physical modulation of cellular dynamics provided by the REAC offers an affordable strategy to mimic iPSC cardiac-like fates in the presence of a cardiogenic milieu.


An Optimized Collagen-Fibrin Blend Engineered Neural Tissue Promotes Peripheral Nerve Repair.

  • Christina M A P Schuh‎ et al.
  • Tissue engineering. Part A‎
  • 2018‎

Tissue engineering approaches in nerve regeneration often aim to improve results by bridging nerve defects with conduits that mimic key features of the nerve autograft. One such approach uses Schwann cell self-alignment and stabilization within collagen gels to generate engineered neural tissue (EngNT). In this study, we investigated whether a novel blend of fibrin and collagen could be used to form EngNT, as before EngNT design a beneficial effect of fibrin on Schwann cell proliferation was observed. A range of blend formulations was tested in terms of mechanical behavior (gel formation, stabilization, swelling, tensile strength, and stiffness), and lead formulations were assessed in vitro. A 90% collagen 10% fibrin blend was found to promote SCL4.1/F7 Schwann cell viability and supported the formation of aligned EngNT, which enhanced neurite outgrowth in vitro (NG108 cells) compared to formulations with higher and lower fibrin content. Initial in vivo tests in an 8 mm rat sciatic nerve model using rolled collagen-fibrin EngNT rods revealed a significantly enhanced axonal count in the midsection of the repair, as well as in the distal part of the nerve after 4 weeks. This optimized collagen-fibrin blend therefore provides a novel way to improve the capacity of EngNT to promote regeneration following peripheral nerve injury.


Experimentally approaching the ICU: monitoring outcome-based responses in the two-hit mouse model of posttraumatic sepsis.

  • Susanne Drechsler‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2011‎

To simulate and monitor the evolution of posttraumatic sepsis in mice, we combined a two-hit model of trauma/hemorrhage (TH) followed by polymicrobial sepsis with repetitive blood sampling. Anesthetized mice underwent femur fracture/sublethal hemorrhage and cecal ligation and puncture (CLP) 48 h later. To monitor outcome-dependent changes in circulating cells/biomarkers, mice were sampled daily (facial vein) for 7 days and retrospectively divided into either dead (DIE) or surviving (SUR) by post-CLP day 7. Prior to CLP, AST was 3-fold higher in DIE, while all other post-TH changes were similar between groups. There was a significant post-CLP intergroup separation. In SUR, RBC and Hb were lower, platelets and neutrophils higher, and lymphocytes mixed compared to DIE. In DIE, all organ function markers except glucose (decrease) were few folds higher compared to SUR. In summary, the combination of daily monitoring with an adequate two-hit model simulates the ICU setting, allows insight into outcome-based responses, and can identify biomarkers indicative of death in the acute posttraumatic sepsis in mice.


Minimum Quality Threshold in Pre-Clinical Sepsis Studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis.

  • Marcin F Osuchowski‎ et al.
  • Infection‎
  • 2018‎

Pre-clinical animal studies precede the majority of clinical trials. While the clinical sepsis definitions and recommended treatments are regularly updated, a systematic review of pre-clinical models of sepsis has not been done and clear modeling guidelines are lacking. To address this deficit, a Wiggers-Bernard Conference on pre-clinical sepsis modeling was held in Vienna in May, 2017. The conference goal was to identify limitations of pre-clinical sepsis models and to propose a set of guidelines, defined as the "Minimum Quality Threshold in Pre-Clinical Sepsis Studies" (MQTiPSS), to enhance translational value of these models.


TNF-α release capacity is suppressed immediately after hemorrhage and resuscitation.

  • Arian Bahrami‎ et al.
  • Chinese journal of traumatology = Zhonghua chuang shang za zhi‎
  • 2017‎

It has been suggested that patients with traumatic insults are resuscitated into a state of an early systemic inflammatory response. We aimed to evaluate the influence of hemorrhagic shock and resuscitation (HSR) upon the inflammatory response capacity assessed by overall TNF-α secretion capacity of the host compared to its release from circulating leukocytes in peripheral circulation.


Impact of mitochondrial nitrite reductase on hemodynamics and myocardial contractility.

  • Peter Dungel‎ et al.
  • Scientific reports‎
  • 2017‎

Inorganic nitrite (NO2-) can be reduced back to nitric oxide (NO) by several heme proteins called nitrite reductases (NR) which affect both the vascular tonus and hemodynamics. The objective of this study was to clarify the impact of several NRs on the regulation of hemodynamics, for which hemodynamic parameters such as heart rate, blood pressure, arterial stiffness, peripheral resistance and myocardial contractility were characterized by pulse wave analysis. We have demonstrated that NO2- reduced to NO in RBCs predominantly influences the heart rate, while myoglobin (Mb) and mitochondria-derived NO regulates arterial stiffness, peripheral resistance and myocardial contractility. Using ex vivo on-line NO-detection, we showed that Mb is the strongest NR occurring in heart, which operates sufficiently only at very low oxygen levels. In contrast, mitochondrial NR operates under both hypoxia and normoxia. Additional experiments with cardiomyocytes suggested that only mitochondria-derived generation of NO regulates cGMP levels mediating the contractility of cardiomyocytes. Our data suggest that a network of NRs is involved in NO2- mediated regulation of hemodynamics. Oxygen tension and hematocrit define the activity of specific NRs.


Engineering of Tracheal Grafts Based on Recellularization of Laser-Engraved Human Airway Cartilage Substrates.

  • Denis Baranovskii‎ et al.
  • Cartilage‎
  • 2022‎

Implantation of tissue-engineered tracheal grafts represents a visionary strategy for the reconstruction of tracheal wall defects after resections and may develop into a last chance for a number of patients with severe cicatricial stenosis. The use of a decellularized tracheal substrate would offer an ideally stiff graft, but the matrix density would challenge efficient remodeling into a living cartilage. In this study, we hypothesized that the pores of decellularized laser-perforated tracheal cartilage (LPTC) tissues can be colonized by adult nasal chondrocytes (NCs) to produce new cartilage tissue suitable for the repair of tracheal defects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: